

PROPRIETARY NOTE

THIS SPECIFICATION IS THE PROPERTY OF BOE AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF BOE AND MUST BE RETURNED TO BOE UPON ITS REQUEST

TITLE : NV116FHM-N41 V3.0

Customer: Acer

Product Specification

Rev. P3

HEFEI BOE Optoelectronics Technology CO., LTD

SPEC. NUMBER	PRODUCT GROUP	Rev.	ISSUE DATE	PAGE
	TFT-LCD	P3	2024.02.06	1 OF 65

PRODUCT GROUP

REV

Rev. P3

2024.02.06

Customer Spec

REVISION HISTORY

 $(\sqrt{\ })$ Preliminary Specification

()Final Specification

Revision No.	Page	Description of Changes	Date	Prepared
P0	-	First Release	2023.9.14	Shi Jian
P1	11/17/18/20/2 1/28/33/34/37	Update TBD item in P0 version	2023.10.17	Shi Jian
P2	12/37	P12:update Reproduction of Color P37: update EDID table	2023.11.30	Shi Jian
Р3	32	Update MDL ID naming rule	2024.02.06	Shi Jian

REVIEWED			
Designer Manager			
Wang Rui(Array) Li Hongmin			
Wang Kun(Cell)	Wang Chun		
Wang Kun(CF) Wang Chun			
Xu Wenchang(EE) Wang Lei			
Zhu Qing(MO)	Cao Jie		
Hua Miaomiao(QE)	Jiang Lei		
Tang Yang(PI) Yin Xiaobin			
APPROVED			
Shi Jian(PM)			

SPEC. NUMBER SPEC. TITLE		PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	2 OF 65

PRODUCT GROUP	

Customer Spec Rev. P3

REV

2024.02.06

ISSUE DATE

Contents

No.	Items	Page
1.0	General Description	4
2.0	Absolute Maximum Ratings	6
3.0	Electrical Specifications	7
4.0	Optical Specifications	11
5.0	Interface Connection	15
6.0	Signal Timing Specification	16
7.0	Input Signals, Display Colors & Gray Scale of Colors	20
8.0	Power Sequence	26
9.0	Connector Description	27
10.0	Mechanical Characteristics	28
11.0	Reliability Test	29
12.0	Handling & Cautions	30
13.0	Label	31
14.0	Packing Information	33
15.0	Mechanical Outline Dimension	34
16.0	EDID Table	36
17.0	General Precautions	40
18.0	Appendix	42

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	3 OF 65

1.0 GENERAL DESCRIPTION

1.1 Introduction

NV116FHM-N41 V3.0 is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 11.6 inch diagonally measured active area with Full-HD resolutions (1920 horizontal by 1080 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M (8bit) colors and color gamut 52%. The TFT-LCD panel used for this module is a low reflection and higher color type. Therefore, this module is suitable for Notebook PC. The LED driver for back-light driving is built in this model. LCD type is HADS.

ISSUE DATE

2024.02.06

All input signals are eDP1.2 interface compatible.

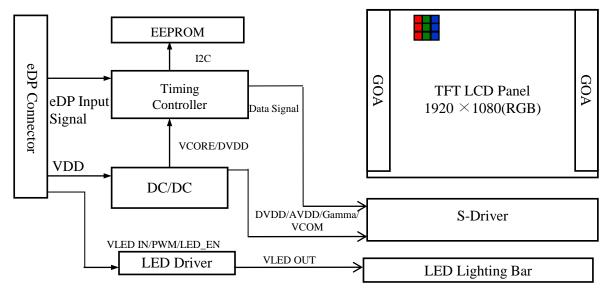


Figure 1. Drive Architecture

1.2 Features

- 2 lane eDP interface with 2.7Gbps link rates
- Thin and light weight
- 16.7M(8bit) color depth, color gamut NTSC 52%
- Single LED lighting bar (Bottom side)
- Data enable signal mode
- Side mounting frame
- Green product (RoHS & Halogen free product)
- On board LED driving circuit
- Low driving voltage and low power consumption
- On board EDID chip
- Adjust backlight brightness with DC mode

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	4 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024.02.06

1.0 GENERAL DESCRIPTION

1.2 Features

DPCD Ver.	sDRRS	DCR	DMRRS	PSR	LRR	MBO
1.1	off	off	off	off	off	off
VESA DSC	MSO	AMD Free-sync	HDR	Dimming	OD	BIST
off	off	off	off	PWM in DC out	off	yes
FRC	DDS	G-sync				
off	off	off				

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	5 OF 65

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. P3	2024.02.06

1.3 Application

• Notebook PC (Wide type)

1.4 General Specification

The followings are general specifications at the model NV116FHM-N41 V3.0. (listed in Table 1)

<Table 1. General Specifications>

Parameter	Specification	Unit	Remarks
Active area	256.320 (H) × 144.180(V)	mm	
Number of pixels	1920(H) × 1080(V)	Pixels	
Pixel pitch	$0.1335(H) \times 0.1335(V)$	mm	
Pixel arrangement	RGB Vertical stripe		
Display colors	16.7M(8bit)		
Color gamut	52%	NTSC	
Display mode	Normally Black		
Dimensional outline	268±0.3(H)*158±0.3 (V)(W/O PCB)*3.0 (Max) 268±0.3(H)*168±0.5 (V)(W/PCB)*3.0(Max)	mm	
Weight	200(max)	g	
Surface treatment	Glare		
Surface hardness	3H		
Back-light	Bottom edge side, 1-LED lighting bar type		Note 1
	P _D : 0.6(Max.)	W	@Mosaic
Power consumption	P _{BL} : 2.1(Max.)	W	@VLED= 12V
	P _{Total} : 2.7(Max.)	W	@Mosaic

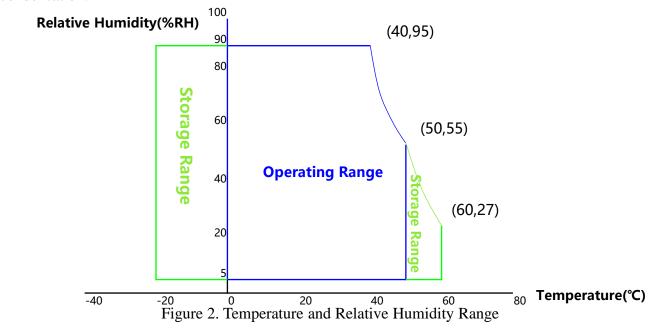
Notes: 1. LED Lighting Bar 3*10*LED Array)

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	6 OF 65

PRODUCT GROUP		REV	ISSUE DATE
	Customer Spec	Rev. P3	2024.02.06

2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.


< Table 2. Absolute Maximum Ratings>

Ta=25+/-2°C

Parameter	Symbol	Min.	Max.	Unit	Remarks	
Power Supply Voltage	$V_{ m DD}$	-0.3	4.0	V		
eDP input Voltage	$V_{ ext{eDP}}$	0	2.0	V	Note 1	
Logic Supply Voltage	V _{IN}	V _{SS} -0.3	V _{DD} +0.3	V		
Operating Temperature	T _{OP}	0	+50	°C	N-4- 2	
Storage Temperature	T _{ST}	-20	+60	°C	Note 2	

Notes:

- 1. Permanent damage to the device may occur if maximum values are exceeded functional operation should be restricted to the condition described under normal operating conditions.
- 2. Temperature and relative humidity range are shown in the figure below.
- 95 % RH Max. ($40~^{\circ}\text{C} \ge \text{Ta}$) Maximum wet bulb temperature at 39 $^{\circ}\text{C}$ or less. (Ta > $40~^{\circ}\text{C}$) No condensation.

	·	
	NV116FHM-N41 V3.0 Product Specification Rev. P3	7 OF 65
SPEC. NUMBER	SPEC. TITLE	PAGE

PRODUCT GROUP

REV

ISSUE DATE

Customer Spec

Rev. P3

2024.02.06

3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Specifications

< Table 3. Electrical Specifications >

 $Ta=25+/-2^{\circ}C$

Parame	eter		Min.	Тур.	Max.	Unit	Remarks
Power Supply Voltage		V_{DD}	3.0	3.3	3.6	V	Note 1
Permissible Input Ripp Voltage	le	V _{RF}	-10% VDD	-	+10% VDD	V	@ V _{DD} = 3.3V, note4
BIST Control Level		High Level	0.8 VDDIO	-	3.3	V	@V _{DDIO} =1.8
		Low Level	0	-	0.15 VDDIO	V	₩ VDDIO=1.6
Power Supply Inrush C	urrent	Inrush	-	-	2	A	Note3&Note5
Power Supply	Mosaic	т	-	-	181	mA	
Current	RGB	I_{DD}	-	-	181	mA	Note 1
	Mosaic	P_{M}	-	-	0.6	W	
D C	RGB	P_{RGB}	-	-	0.6	W	
Power Consumption	BLU	P_{BL}	-	-	2.1	W	Note 2
	Total	P _{Total}	-	-	2.7	W	@Mosaic

SPEC. NUMBER	SPEC. TITLE
	NV116FHM-N41 V3.0 Product Specification Rev. P3

PAGE 8 OF 65

PRODUCT GROUP

REV

ISSUE DATE

Customer Spec

Rev. P3

2024.02.06

3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Specifications

Notes:

- 1. The supply voltage is measured and specified at the interface connector of LCM. The current draw and power consumption specified is for 3.3V at 25 °C.
 - a) Mosaic pattern 8*8
 - b) R/G/B patterns

(b)

Figure 3. Power Measure Patterns

- 2. Calculated value for reference (VLED \times ILED) , The power consumption with LED Driver are under the VLED = 12.0V , 25°C, PWM Duty 100%
- 3. Measure condition (Figure 4)

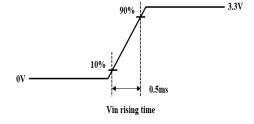


Figure 4. Inrush Measure Condition

- 4. Input voltage range:3.0~3.6V.Test condition: Oscilloscope bandwidth 20MHz, AC coupling
- 5. When peak current is 2A ,VDD should be more than 2.75V

SPEC. N	UMBER

PAGE 9 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024.02.06

3.2 Backlight Unit

< Table 4. LED Driving Guideline Specifications >

Ta=25+/-2°C

	Parameter		Min.	Тур.	Max.	Unit	Remarks
LED Forward V	oltage	$V_{\rm F}$	-	-	2.9	V	
LED Forward C	urrent	I_{F}	_	19	-	mA	
LED Power Inp	ut Voltage	VLED	5	12	21	V	
LED Power Inp	ut Current	I_{LED}	-	-	Max.	mA	NI-4- 1
LED Power Cor	sumption	P_{LED}	_	-	2.15	W	Note 1
Power Supply Voltage for LED Driver Inrush		Iled inrush	-	-	1.5	V	Note 3
LED Life-Time		N/A	15,000	-	-	Hour	I _F = 19mA Note 2
EN Control	Backlight On	3. 7	2.5	-	5.0	V	
Level	Backlight Off	$ m V_{BL_EN}$	0	-	0.5	V	
PWM Control	High Level	17	2.5	-	5.0	V	
Level	Low Level	$ m V_{ m BL_PWM}$	0	-	0.5	V	
PWM Control Frequency		F_{PWM}	200	-	2,000	Hz	
Duty Ratio			1	-	100	%	
PWM control resolution			0.4			%	@1Khz Note4

Notes:

- 1. Power supply voltage12V for LED driver. Calculator value for reference IF \times VF \times 30 /driver efficiency = PLED
- 2. The LED life-time define as the estimated time to 50% degradation of initial luminous.
- 3. Measure condition (Figure 5)
- 4. 0.4% PWM duty change can be detected when Fpwm is 1Khz_{12.0V}

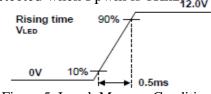


Figure 5. Inrush Measure Condition

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	10 OF 65

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. P3	2024.02.06

3.3 LED Structure

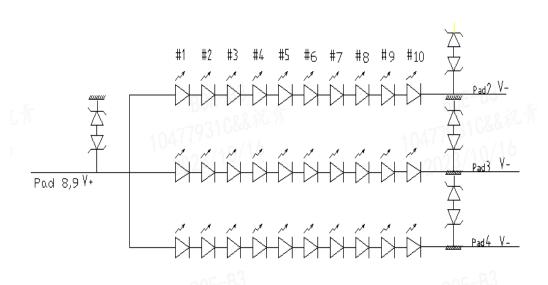


Figure 6. LED Structure

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	11 OF 65
50000 0001 5		

BOE	PRODUCT GROUP	REV	ISSUE DATE
7 2 -	Customer Spec	Rev. P3	2024.02.06

4.0 OPTICAL SPECIFICATION

4.1 Overview

The test of optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = $25\pm2^{\circ}$ C) with the equipment of luminance meter system (**SR-3&ENC Q-FPMS-37A**) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0° . We refer to $\theta \emptyset = 0$ (= θ 3) as the 3 o'clock direction (the "right"), $\theta \emptyset = 90$ (= θ 12) as the 12 o'clock direction ("upward"), $\theta \emptyset = 180$ (= θ 9) as the 9 o'clock direction ("left") and $\theta \emptyset = 270$ (= θ 6) as the 6 o'clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the display surface shall stay fixed. The backlight should be operating for 30 minutes prior to measurement. VDD shall be 3.3+/-0.3V at 25° C. Optimum viewing angle direction is 6 'clock.

4.2 Optical Specifications

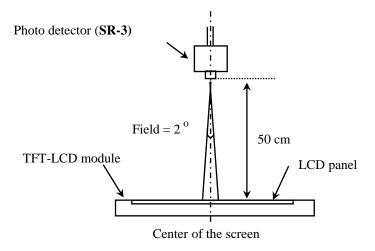
<Table 5. Optical Specifications>

Parame	eter	Symbol	Condition	Min.	Typ.	Max.	Unit	Remark		
	Horizontal	Θ_3		80	85	-	Deg.			
Viewing Angle	Horizoiltai	Θ_9	CR > 10	80	80 85 -	-	Deg.	Note 1		
Range	Vertical	Θ_{12}	CK > 10	80	85	-	Deg.	Note 1		
	vertical	Θ_6		80	85	-	Deg.			
Luminance Cor	ntrast Ratio	CR	$\Theta = 0$ °	600	800	-		Note 2		
Luminance of White	5 Points	\mathbf{Y}_{w}	$\Theta=0$ °	255	300		cd/m ²	Note 3		
White	5 Points	ΔΥ5	U = 0 $ILED = 21 mA$	80	-	-	%	NI 4		
Luminance Uniformity	13 Points	ΔΥ13		67	1	-	%	Note 4		
White Chron	moticity	W_{x}	$\Theta = 0^{\circ}$	0.283	0.313	0.343		Note 5		
Willte Cilion	maticity	W_{v}	0 = 0	0.299 0.329	0.359		Note 3			
	Red	R_x			0.610] [
	Red	R _y					0.333			
Reproduction	Green	G_{x}	$\Theta = 0$ °	T 0.02	0.320	Typ.+0.03				
of Color	Green	G_{v}	0-0	Typ0.03	0.559	1 yp.+0.03				
	Dlas	B_{x}	0.155	0.155	0.155					
	Blue	B_{v}			0.083					
Color Ga	ımut			47	52	-	%	NTSC		
Response Time (Rising + Falling)		T_{RT}	Ta= 25°C Θ = 0°	-	30	35	ms	Note 6		
Cross T	alk	СТ	$\Theta=0_{\circ}$	-	ı	2.0	%	Note 7		
Gamn	na	-	-	2.0	2.2	2.4	-			

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	12 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024.02.06

Notes:


- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface (see Figure 7).
- 2. Contrast measurements shall be made at viewing angle of Θ = 0 and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state . (see Figure 7) Luminance Contrast Ratio (CR) is defined mathematically.

- 3. Center Luminance of white is defined as luminance values of 5 point average across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in Figure 8 for a total of the measurements per display.
- 4. The White luminance uniformity on LCD surface is then expressed as : ΔY =Minimum Luminance of 5(or 13) points / Maximum Luminance of 5(or 13) points.(see Figure 8 and Figure 9).
- 5. The color chromaticity coordinates specified in Table 5 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 6. The electro-optical response time measurements shall be made as Figure 10 by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is T_f , and 90% to 10% is T_r .
- 7. Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark. (See Figure 11).

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	13 OF 65

4.3 Optical Measurements

Optical characteristics measurement setup

Figure 7. Measurement Set Up

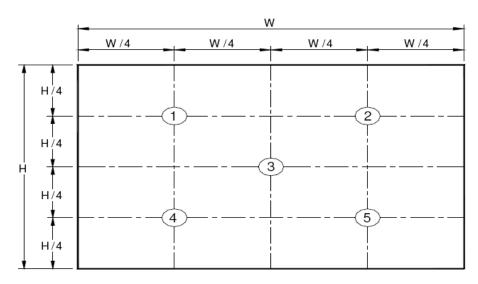


Figure 8. White Luminance and Uniformity Measurement Locations (5 points)

Center Luminance of white is defined as luminance values of center 5 points across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in Figure 7 for a total of the measurements per display.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	14 OF 65

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. P3	2024.02.06

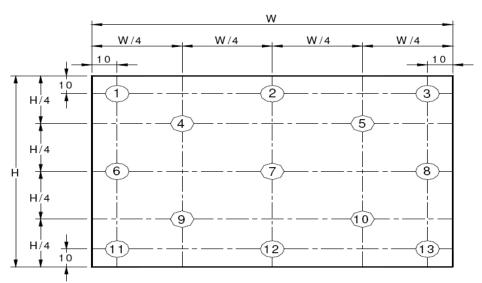


Figure 9. Uniformity Measurement Locations (13 points)

The White luminance uniformity on LCD surface is then expressed as : $\Delta Y5 = Minimum Luminance$ of five points / Maximum Luminance of five points (see Figure 8), $\Delta Y13 = Minimum Luminance$ of 13 points /Maximum Luminance of 13 points (see Figure 9).

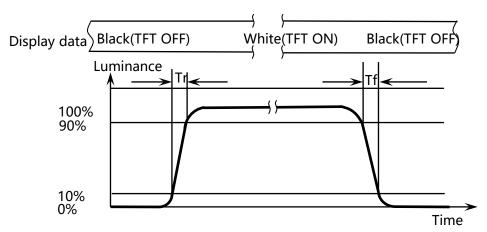


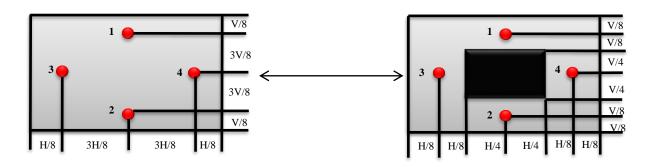
Figure 10. Response Time Testing

The electro-optical response time measurements shall be made as shown in Figure 10 by switching the "data" input signal ON and OFF. Tr: The luminance to change from 10% to 90%, Tf: The luminance to change from 90% to 10%.

The test system :ENC Q-FPMS-37A

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	15 OF 65
D0000 0001 D	*	1 1 (0 1 0 TT 0 0 T)

PRODUCT GROUP


REV

ISSUE DATE

Customer Spec

Rev. P3

2024.02.06

Cross Talk (%) =
$$\left| \frac{Y_B - Y_A}{Y_A} \right| \times 100$$

Figure 11. Cross Talk Modulation Test Description

Where:

 Y_A = Initial luminance of measured area (cd/m²)

 $Y^{}_{B} = Subsequent luminance of measured area (cd/m^2)$

The location 1/2/3/4 measured will be exactly the same in both patterns. The test background gray is from L64 to L192. Take the largest data as the result.

Cross Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark.(Refer to Figure 11)

The test system:: **SR-3**

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	16 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024.02.06

5.0 INTERFACE CONNECTION

5.1 Electrical Interface Connection

The electronics interface connector is UJU IS050-L30B-C10.

The connector interface pin assignments are listed in Table 6.

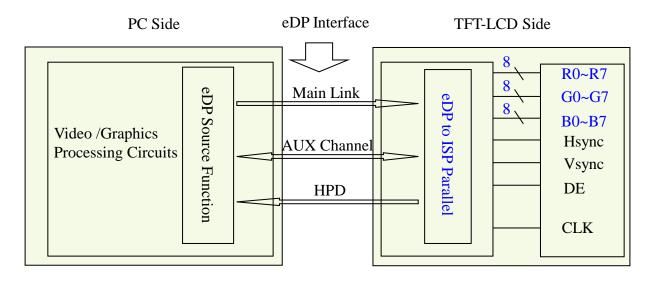
<a>Table 6. Pin Assignments for the Interface Connector>

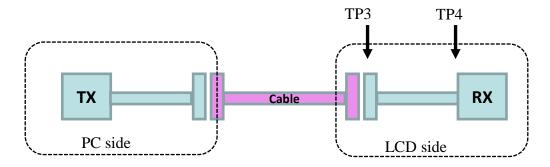
Terminal	Terminal Symbol Functions				
Pin No.	Symbol	Description			
1	NC	No Connection			
2	H_GND	Ground			
3	LANE1_N	eDP RX Channel 1 Negative			
4	LANE1_P	eDP RX Channel 1 Positive			
5	H_GND	Ground			
6	LANEO_N	eDP RX Channel 0 Negative			
7	LANE0_P	eDP RX Channel 0 Positive			
8	H_GND	Ground			
9	AUX_CH_P	eDP AUX CH Positive			
10	AUX_CH_N	eDP AUX CH Negative			
11	H_GND	Ground			
12	LCD_VCC	Power Supply, 3.3V (typ.)			
13	LCD_VCC	Power Supply, 3.3V (typ.) Power Supply, 3.3V (typ.)			
13	BIST	Panel Self Test Enable			
15	H_GND	Ground			
16	H_GND	Ground			
17	HPD	Hot Plug Detect Output			
18	BL_GND	LED Ground			
19		LED Ground			
	BL_GND	LED Ground LED Ground			
20	BL_GND	LED Ground LED Ground			
22	BL_GND				
23	BL_ENABLE	LED Enable Pin(+3.3V Input)			
24	BL_PWM	System PWM Signal Input No Connection			
25	NC NC				
25	NC DI DOWED	No Connection			
	BL_POWER	LED Power Supply 5V-21V			
27	BL_POWER	LED Power Supply 5V-21V			
28	BL_POWER	LED Power Supply 5V-21V			
29	BL_POWER	LED Power Supply 5V-21V			
30	NC	No Connection			

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	17 OF 65

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. P3	2024.02.06

5.2 eDP Interface




Figure 12. eDP Interface Architecture

Note:

 $Transmitter: ESWIN\ EPT9501\ or\ equivalent.$

Transmitter is not contained in module.

5.3 eDP Mainlink eye diagram test point

Mainlink eye diagram test point

Notes: Mainlink eye diagram at TP3 needs to be measured on the sink side(LCD Panel). The spec of sink eye vertices at TP3 should follow VESA DisplayPortTM Standard Version1. Revision 1a and Vesa Embedded DisplayPort Standard Version 1.2.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	18 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024 02 06

5.3 Data Input Format

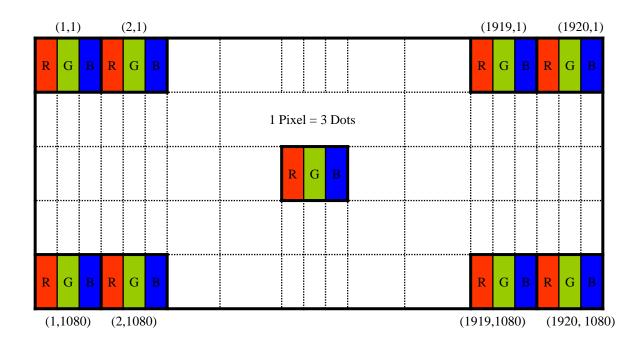


Figure 13. Display Position of Input Data (V-H)

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	19 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024.02.06

5.4 Back-light & LCM Interface Connection

BLU Interface Connector: STM MSK24036P9HC.

<Table 7. Pin Assignments for the BLU Connector>

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	NC	No Connection	6	GND	Ground
2	LED	LED cathode connection	7	NC	No Connection
3	LED	LED cathode connection	8	Vout	LED anode connection
4	LED	LED cathode connection	9	Vout	LED anode connection
5	NC	No Connection			

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	20 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024.02.06

6.0 SIGNAL TIMING SPECIFICATION

6.1 The NV116FHM-N41 Is Operated By The DE Only

< Table 8. Signal Timing Specification >

Item		Symbols	Min	Тур	Max	Unit
Clock	Frequency	1/Tc	139.2	139.8	140.4	MHz
			1119	1120	1121	lines
Fr	Frame Period		-	60	1	Hz
			-	16.67	-	ms
Vertical Display Period		Tvd	-	1080	1	lines
One line Scanning Period		Th	2072	2080	2088	clocks
Horizon	tal Display Period	Thd	-	1920	-	clocks

Note: The above is as optimized setting.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	21 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024 02 06

6.2 eDP Rx Interface Timing Parameter

The specification of the eDP Rx interface timing parameter is shown in Table 9.

<Table 9. eDP Main-Link RX TP4 Package Pin Parameters>

Item	Symbol	Min	Тур	Max	Unit	Remark
Spread spectrum clock (Link clock down-spreading)	SSC	-	-	0.5	%	
Differential peak-to-peak input voltage at package pins	VRX-DIFFp-p	120	-	1200	mV	
Rx input DC common mode voltage	VRX_DC_CM	0	-	2	V	
Differential termination resistance	RRX-DIFF	80	ı	100	Ω	
Single-ended termination resistance	RRX-SE	40	-	60	Ω	
Rx short circuit current limit	IRX_SHORT	-	-	20	mA	
Intra-pair skew at Rx package pins (HBR) RX intra-pair skew tolerance at HBR	LRX_SKEW_ INTRA_PAIR	-	-	60	ps	
AC Coupling Capacitor	CSOURCE_ML	75		200	nF	Source side

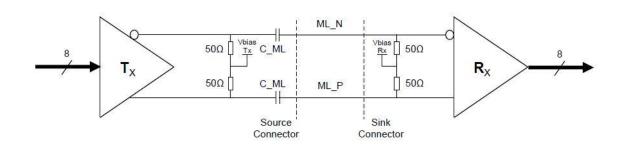


Figure 14. Main link differential pair

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	22 OF 65

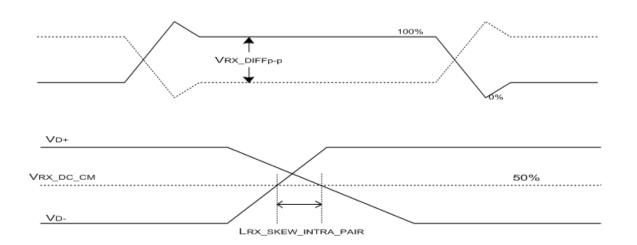


Figure 15. VRX-DIFFp-p & LRX_SKEW_INTRA_PAIR

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	23 OF 65

PRODUCT GROUP

REV

ISSUE DATE

Customer Spec

Rev. P3

2024.02.06

<Table 10. HPD Characteristics>

Item	Symbol	Min	Тур	Max	Unit	Remark
HPD voltage	VHPD	2.25	-	3.6	V	
Hot Plug Detection Threshold	-	2.0	-	-	V	Saura aida Data atin a
Hot Unplug Detection Threshold	-	-	-	0.8V	V	Source side Detecting
HPD_IRQ Pulse Width	HPD_IRQ	0.5	-	1	ms	
HPD_TimeOut	-	2.0	-	-	ms	

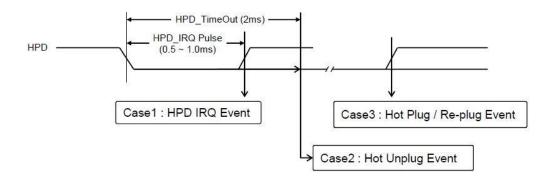


Figure 16. HPD Events

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	24 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024 02 06

<Table 11. AUX Characteristics>

Item	Symbol	Min	Тур	Max	Unit	Remark
AUX unit interval	UIAUX	0.4	0.5	0.6	Us	
AUX peak-to-peak input differential voltage	VAUX-RX-D IFFp-p	0.29	-	1.38	V	
AUX CH termination DC resistance	RAUX-TER M	80	100	120	Ohm	
AUX DC common mode voltage	VAUX-DC-C M	0	-	2	V	
AUX turn around common mode voltage	VAUX-TUR N-CM	-	-	0.3	V	
AUX short circuit current limit	IAUX-SHOR T	-	-	90	mA	
AUX AC Coupling Capacitor	CSOURCE-A UX	75	-	200	nf	Source side

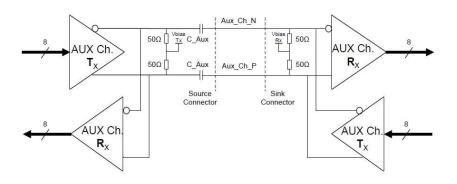


Figure 17. AUX differential pair

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	25 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev P3	2024 02 06

7.0 INPUT SIGNALS, BASIC DISPLAY COLORS & GRAY SCALE OF COLORS

< Table 12. Input Signal & Basic Display Colors & Gray Scale of Colors >

		Colors &									Data	sig	nal						r							
		Gray scale	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B0	В1	B2	B3	B4	B5	В6	В
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic		Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
colors		Light Blue	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Purple	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
		Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Δ	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Darker	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray scale	of	Δ				•	Î .							•	1								1			
Red		∇				,	l <u> </u>							,	l								↓			
		Brighter	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		∇	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Δ	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Darker	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray scale	of	Δ				•	1							•	1								1			
Green		∇				,	l _							,	l								↓			
		Brighter	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		∇	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
		Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray scale	of	Δ				,	Î .							•	1								1			
Blue		∇				,	l							,	Į								↓			
		Brighter	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
		∇	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
		Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray		Δ	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
scale		Darker	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0
of		Δ				•	1							•	1								↑			
White		∇				,	<u>l</u>							,	<u>l</u>								↓			
&		Brighter	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1
Black		∇	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
<u> </u>		White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	26 OF 65

	9

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024.02.06

8.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown in below.

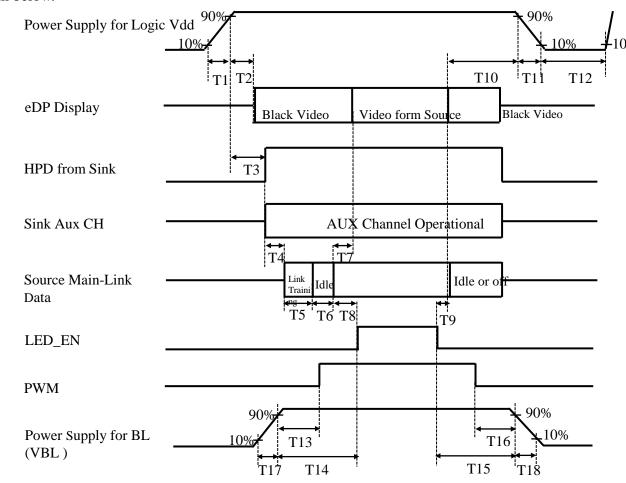


Figure 18. Power Sequence

- $0.5 \text{ms} \leq \text{T1}$ $\leq 10 \text{ ms}$
- 0ms $< T2 \le 200 \text{ ms}$
- $< T3 \le 200 \text{ ms}$ 0ms
- T4+T5+T6+T8>80ms
- 0ms $< T7 \le 50 \text{ms}$
- 50 ms < T8
- 0ms< T9

- 100 ms < T10 < 500 ms
- $0.5 \text{ms} \leq \text{T}11 \leq 10 \text{ ms}$
- $500 \text{ms} \leq T12$
- < T13 0ms
- < T14 0ms
- 0ms < T15
- 0ms < T16

Notes:

- 1. When the power supply VDD is 0V, keep the level of input signals on the low or keep high impedance.
- 2. Do not keep the interface signal high impedance when power is on. Back Light must be turn on after power for logic and interface signal are valid.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	27 OF 65

 $0.5 \text{ms} \leq T17$

 $0.5 \text{ms} \leq T18$

9.0 Connector Description

Physical interface is described as for the connector on LCM.

These connectors are capable of accommodating the following signals and will be following components.

9.1 TFT LCD Module

< Table 13. Signal Connector >

Connector Name /Description	For Signal Connector
Manufacturer	UJU
Type/ Part Number	IS050-L30B-C10
Mating Housing/ Part Number	I-PEX 20454-030T

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	28 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024.02.06

10.0 MECHANICAL CHARACTERISTICS

10.1 Dimensional Requirements

Figure 23 shows mechanical outlines for the model NV116FHM-N41 V3.0. Other parameters are shown in Table 14.

<Table 14. Dimensional Parameters>

Parameter	Specification	Unit
Active Area	256.320 (H) × 144.180(V)	mm
Number of pixels	1920(H) × 1080(V)	Pixels
Pixel pitch	$0.1335(H) \times 0.1335(V)$	mm
Pixel arrangement	RGB Vertical stripe	
Display colors	16.7M(8bit)	
Display mode	Normally Black	
Dimensional outline	268±0.3(H)*158±0.3 (V)(W/O PCB)*3.0 (Max) 268±0.3(H)*168±0.5 (V)(W/PCB)*3.0(Max)	mm
Weight	200(max)	g

10.2 Mounting

See Figure 24.

10.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an Glare coating to minimize reflection and a 3H coating to reduce scratching.

10.4 Light Leakage

There shall not be visible light from the back-lighting system around the edges of the screen as seen from a distance 50cm from the screen with an overhead light level of 350lux.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	29 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024.02.06

11.0 RELIABILITY TEST

The reliability test items and its conditions are shown in below.

<Table 15. Reliability Test>

No	Test Items	Conditions	Remark
1	High temperature storage test	$Ta = 60^{\circ}C$, 240 hrs	
2	Low temperature storage test	Ta = -20°C, 240 hrs	
3	High temperature & high humidity operation test	Ta = 50°C, 80%RH, 240 hrs	
4	High temperature operation test	Ta = 60°C, 60%RH, 240 hrs	
5	Low temperature operation test	Ta = 0°C, 240 hrs	
6	Thermal shock	Ta = -20 °C \leftrightarrow 60 °C (0.5 hr), 60% \pm 3% RH, 100 cycle	
7	Vibration test (non-operating)	Ta = 25°C, 60%RH, 1.5G, 10~500Hz, Sine X,Y,Z / Sweep rate : 1 hour	Note 1
8	Shock test (non-operating)	Ta = 25°C, 60%RH, 220G, Half Sine Wave 2msec \pm X, \pm Y, \pm Z Once for each direction	Note 1
9	Electro-static discharge test (operating)	Air : 150 pF, 330Ω, \pm 15 KV Contact : 150 pF, 330Ω, \pm 8 KV Ta = 25°C, 60% RH,	Note 2

Notes:

- 1. The fixture must be hard enough, so that the module would not be twisted or bent.
- 2. Self- recovery and restart recovery is allowed. No hardware failures.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	30 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024.02.06

12.0 HANDLING & CAUTIONS

- (1) Cautions when taking out the module
 - Pick the pouch only, when taking out module from a shipping package.
- (2) Cautions for handling the module
 - As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
 - As the LCD panel and back light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
 - As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
 - Do not pull the interface connector in or out while the LCD module is operating.
 - Put the module display side down on a flat horizontal plane.
 - Handle connectors and cables with care.
- (3) Cautions for the operation
 - When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
 - Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.
- (4) Cautions for the atmosphere
 - Dew drop atmosphere should be avoided.
 - Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere.
 Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
- (5) Cautions for the module characteristics
 - Do not apply fixed pattern data signal to the LCD module at product aging.
 - Applying fixed pattern for a long time may cause image sticking.
- (6) Other cautions
 - Do not disassemble and/or re-assemble LCD module.
 - Do not re-adjust variable resistor or switch etc.
 - When returning the module for repair or etc. Please pack the module not to be broken. We recommend to use the original shipping packages.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	31 OF 65

PRODUCT GROUP	

REV

ISSUE DATE

Customer Spec

Rev. P3

2024.02.06

13.0 LABEL

(1) Product Label

NV116FHM-N41 V3.0

1

(2

3

Figure 20. Product Label

Module ID Naming Rule:

Label Size: 48mm × 12mm

1.MDL Name: NV116FHM-N41 V3.0

2. MDL ID Bar Code

3. MDL ID

<Table 16. Module ID Naming Rule>

For example

序列号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
代码	Х	Х	Х	3	Х	X	Х	х	Х	Х	х	X	X	X	X	X	х
描述	GE	BN	Grade	В3	,	Y	М		FG-Cod	le后4位		Serial Number					

SPEC. NUMBER	SPEC. TITLE
	NV116FHM-N41 V3 0 Product Specific

PAGE 32 OF 65

NV116FHM-N41 V3.0 Product Specification Rev. P3

R2020-Q001-B

A4(210 X 297)

PRODUCT GROUP REV ISSUE DATE Customer Spec Rev. P3 2024.02.06

(2) High voltage caution label

HIGH VOLTAGE CAUTION

RISK OF ELECTRIC SHOCK, DISCONNECT THE ELECTRIC POWER BEFORE SERVICING COLD CATHODE FLUORESCENT LAMP IN LCD
PANEL CONTAINS A SMALL AMOUNT

OF MERCURY, PLEASE FOLLOW LOCAL ORDINANCES OR REGULATIONS FOR DISPOSAL,

Figure 20. High Voltage Caution Label

(3) Box label

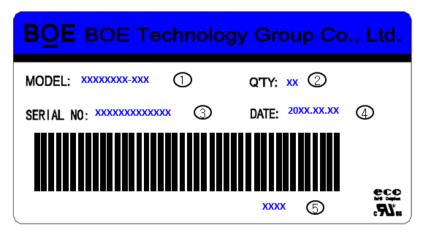


Figure 21. Box Label

Serial number marked part needs to print, show as follows:

- 1. FG-CODE(Before 12 bit)
- 2. Product quantity

3. Box ID

- 4. Date
- 5. FG-Code After four

<Table 17. Box Label Naming Rule >

Description	Prod	lucts/GBN	Grade	Line	Ye	ar	Month	Revision Code	Serial Number				
Code	s	L	S	5	1	2	3	D	0	0	0	6	8
Digit	1	2	3	4	5	6	7	8	9	10	11	12	13

SPEC. NUMBER	SPEC. TITLE	PAGE	
	NV116FHM-N41 V3.0 Product Specification Rev. P3	33 OF 65	

PRODUCT GROUP	

REV

ISSUE DATE

Customer Spec

Rev. P3

2024.02.06

14.0 PACKING INFORMATION

14.1 Packing Order

- 1-. Put the Panel in the Tray
- -. Then put the Spacer on the Panel
- -. Capacity:2pcs LCM/Tray
 2pcs Spacer/Tray

- 2-. Repeat put the Tray & Panel & Spacer until to 15pcs, At last put 1pcs empty Tray
- -Put the 16 pcs Tray in the PE Bag
- 3-. Put one EPE Board in the Inner Box
- -. Put the PE Bag with 16 pcs Tray in the

EPE Board

- -. At last put one EPE Board
- -. Capacity: 30pcs LCM/Box

- 4-. Put 16EA Box on the Pallet
- -. Secure with strapping tape, wrap around film, paper protection Angle.
- -. Capacity: 4EA Box/Layer, 4Layer, 480pcs LCM/Pallet

Figure 26. Packing Order

- Box dimension: :540mm(W) x 440mm(D) x 240mm(H)
- Package quantity in one box: 30pcs

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	34 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev P3	2024 02 06

15.0 MECHANICAL OUTLINE DIMENSION

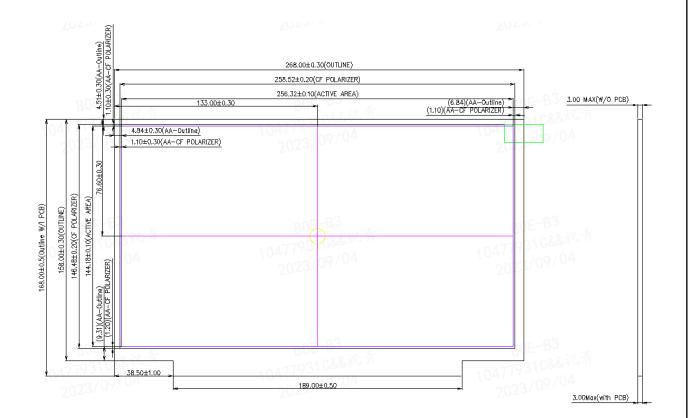


Figure 24. TFT-LCD Module Outline Dimension (Front View)

Notes:

- 1. Warpage and deformation Spec.: 0.5mm Max..
- 2. The eDP connector is measured at PIN 1 and mating line.
- 3. Unspecified tolerance refer to $\pm 0.3 \ \text{mm}.$
- 4. The measurement method for the dimension of module, please refer to product spec.
- 5. "()"marks the reference dimensions.

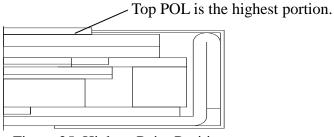


Figure 25. Highest Point Position

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	35 OF 65

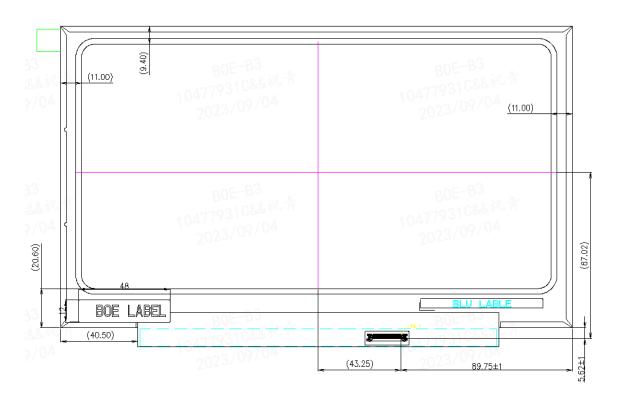


Figure 26. TFT-LCD Module Outline Dimensions (Rear view)

Notes:

- 1. Warpage and deformation Spec.: 0.5mm Max..
- 2. The eDP connector is measured at PIN 1 and mating line.
- 3. Unspecified tolerance refer to ± 0.3 mm.
- 4. Top polarizer is the highest portion.
- 5. Do not have light leakage on four corners of module.
- 6. Measurement method refer to Appendix A
- 7. System matching refer to Appendix B
- 8. "()"marks the reference dimensions.
- 9. PCBA cover tape will bulge without external force due to the material character of the tape.

The tolerance of PCBA cover tape thickness will not exceed 2 mm from surface of polarizer and thickness of PCBA side can be reformed to normal thickness by external force.

- 10. If system interfere with panel or twist panel while system operation, it may cause ripple or acoustic noise or other side effect. Please prevent such twist or interfere by system operation.
- 11. The system materials should contain no or less NH4+ ions.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	36 OF 65

REV

ISSUE DATE

Customer Spec

Rev. P3

2024.02.06

16.0 EDID Table

Address (HEX)	Function	Hex	Dec	crc	Input values.	Notes
00		00	0		0	
01		FF	255		255	
02		FF	255		255	
03		FF	255		255	
04	Header	FF	255		255	EDID Header
05		FF	255		255	
06		FF	255		255	
07		00	0		0	
08		09	9			
09	ID Manufacturer Name	E5	229		BOE	ID = BOE
0A		98	152			
0B	ID Product Code	0C	12		3224	ID = 3224
0C		00	0		0	
0D		00	0		0	
0E	32-bit serial No.	00	0		0	
0F		00	0		0	
10	Week of manufacture	2B	43		43	
11	Year of Manufacture	21	33		2023	Manufactured in 2023
12	EDID Structure Ver.	01	1		1	EDID Ver 1.0
13	EDID revision #	04	4		4	EDID Rev. 0.4
14	Video input definition	A5	165		-	Refer to right table
15	Max H image size	1A	26		26	25.632 cm (Approx)
16	Max V image size	0E	14		14	14.418 cm (Approx)
17	Display Gamma	78	120		2.2	Gamma curve = 2.2
18	Feature support	03	3		-	Refer to right table
19	Red/Green low bits	50	80		-	Red / Green Low Bits
1A	Blue/White low bits	D5	213		-	Blue / White Low Bits
1B	Red x high bits	9C	156	625	0.610	Red (x) = 10011100 (0.61)
1C	Red y high bits	55	85	341	0.333	Red (y) = 01010101 (0.333)
1D	Green x high bits	52	82	328	0.320	Green (x) = 01010010 (0.32)
1E	Green y high bits	8F	143	572	0.559	Green (y) = 10001111 (0.559)
1F	Blue x high bits	27	39	159	0.155	Blue (x) = 00100111 (0.155)
20	BLue y high bits	15	21	85	0.083	Blue (y) = 00010101 (0.083)
21	White x high bits	50	80	321	0.313	White (x) = 01010000 (0.313)
22	White y high bits	54	84	337	0.329	White (y) = 01010100 (0.329)
23	Established timing 1	00	0		-	(), 31010100 (0.020)
24	Established timing 2	00	0		-	Refer to right table
25	Established timing 3	00	0		_	

SPEC. NUMBER

SPEC. TITLE

NV116FHM-N41 V3.0 Product Specification Rev. P3

PAGE 37 OF 65

REV

ISSUE DATE

Customer Spec

Rev. P3

2024.02.06

27	Standard timing #1	01	1		
27 28 29	Standard timing #1	01			
29			1		Not Used
29		01	1		
2A	Standard timing #2	01	1		Not Used
		01	1		
2B	Standard timing #3	01	1		Not Used
2C		01	1		
2D S	Standard timing #4	01	1		Not Used
2E	0	01	1		
2F	Standard timing #5	01	1		Not Used
30		01	1		
31	Standard timing #6	01	1		Not Used
32	0	01	1		
33	Standard timing #7	01	1		Not Used
34	Ota a dand timin a #0	01	1		Net Use d
35	Standard timing #8	01	1		Not Used
36		99	153	100.0	100 770MHz Main alask
37		36	54	139.8	139.776MHz Main clock
38		80	128	1920	Hor Active = 1920
39		A0	160	160	Hor Blanking = 160
ЗА		70	112	-	4 bits of Hor. Active + 4 bits of Hor. Blanking
3В		38	56	1080	Ver Active = 1080
3C		28	40	40	Ver Blanking = 40
3D		40	64	-	4 bits of Ver. Active + 4 bits of Ver. Blanking
3E	Detailed timing/monitor	30	48	48	Hor Sync Offset = 48
3F	descriptor #1	20	32	32	H Sync Pulse Width = 32
40		A5	165	10	V sync Offset = 10 line
41		00	0	5	V Sync Pulse width: 5 line
42		00	0	256	Horizontal Image Size = 256.32 mm (Low 8 bits)
43		90	144	144	Vertical Image Size = 144.18 mm (Low 8 bits)
44		10	16	-	4 bits of Hor Image Size + 4 bits of Ver Image Size
45		00	0	0	Hor Border (pixels)
46		00	0	0	Vertical Border (Lines)
47		1A	26	-	Refer to right table

SPEC. NUMBER

SPEC. TITLE

NV116FHM-N41 V3.0 Product Specification Rev. P3

PAGE 38 OF 65

REV

ISSUE DATE

Customer Spec

Rev. P3

2024.02.06

48		66	102			
49		24	36		93.2	93.184MHz Main clock
4A		80	128		1920	Hor Active = 1920
4B		A0	160		160	Hor Blanking = 160
4C		70	112		_	4 bits of Hor. Active + 4 bits of Hor. Blanking
4D		38	56		1080	Ver Active = 1080
4E		28	40		40	Ver Blanking = 40
4F		40	64		-	4 bits of Ver. Active + 4 bits of Ver. Blanking
50	Detailed	30	48		48	Hor Sync Offset = 48
51	timing/monitor descriptor #2	20	32		32	H Sync Pulse Width = 32
52		A5	165		10	V sync Offset = 10 line
53		00	0		5	V Sync Pulse width: 5 line
54		00	0		256	Horizontal Image Size = 256.32 mm (Low 8 bits)
55		90	144		144	Vertical Image Size = 144.18 mm (Low 8 bits)
56		10	16		-	4 bits of Hor Image Size + 4 bits of Ver Image Size
57		00	0		0	Hor Border (pixels)
58		00	0		0	Vertical Border (Lines)
59		1A	26		-	Refer to right above table
5A		00	0		-	
5B		00	0		-	Indicates descriptor is a display Descriptor
5C		00	0		-	Reserved
5D		FD	253		-	Tag Number for Display Range Limits Descriptor
5E		00	0		0	Vertical/Horizontal Rate Offset are zero
5F		28	40		40	Minimum Vertical Rate:40 Hz
60		3C	60		60	Maximum Vertical Rate:60 Hz
61		43	67		67.2	Minimum Horizontal Rate:67.2 kHz
62	Detailed timing/monitor	43	67		67.2	Maximum Horizontal Rate:67.2 kHz
63	descriptor #3	0E	14	1	39.776	Maximum Pixel Clock:139.776 MHz
64		01	1		-	Range Limits Only
65		0A	10		-	
66		20	32		-	
67		20	32		-	
68		20	32		-	Display Range Limits & CVT Support Definition
69		20	32		-	
6A		20	32		-	
6B		20	32		-	

SPEC. NUMBER

SPEC. TITLE

NV116FHM-N41 V3.0 Product Specification Rev. P3

PAGE 39 OF 65

REV

ISSUE DATE

Customer Spec

Rev. P3

2024.02.06

6C		00	0			Indicates descriptor #4 is a display Descriptor
6D		00	0			indicates descriptor #4 is a display Descriptor
6E		00	0			Reserved
6F		FE	254			Tag: ASCII String
70		00	0			Reserved
71		4E	78		N	
72		56	86		V	
73		31	49		1	
74	Detailed	31	49		1	
75	timing/monitor descriptor #4	36	54		6	
76		46	70		F	M
77		48	72		Н	Model name: NV116FHM-N41
78		4D	77		М	
79		2D	45		-	
7A		4E	78		N	
7B		34	52		4	
7C		31	49		1	
7D		0A	10			
7E	Extension flag	00	0		1	0 :1個EDID;N-1:N 个 EDID
7F	Checksum	1E	30	30	-	

SPEC. NUMBER

SPEC. TITLE

NV116FHM-N41 V3.0 Product Specification Rev. P3

PAGE 40 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev P3	2024 02 06

17.0 GENERAL PRECAUTIONS

17.1 HANDLING

- (1) When the module is assembled, It should be attached to the system firmly using every mounting holes. Be careful not to twist or bend the modules.
- (2) Refrain from strong mechanical shock or any force to the module. Otherwise, it may cause improper operation or damage to the module.
- (3) Note that polarizers are very fragile and could be easily damaged. Do not press or scratch the surface harder than 1 HB pencil lead.
- (4) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, Staining and discoloration may occur.
- (5) If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- (6) The desirable cleaners are water, IPA (Isopropyl Alcohol) or Hexane. Do not use Ketone type materials(ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage to the polarizer due to chemical reaction.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth .In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static, it may cause damage to the module.
- (9) Use fingerstalls with soft gloves to keep display clean during the incoming inspection and assembly process.
- (10) Do not disassemble the module.
- (11) Do not pull or fold the LED FPC.
- (12) Do not touch any component which is located on the back side.
- (13) Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- (14) Pins of connector shall not be touched directly with bare hands.

17.2 STORAGE

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C and relative humidity of less than 70%.
- (2) Do not store the TFT-LCD module in direct sunlight.
- (3) The module shall be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during the store.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	41 OF 65

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. P3	2024.02.06

17.3 OPERATION

- (1) Do not connect, disconnect the module in the "Power On" condition.
- (2) Power supply should always be turned on/off by following item 8.0 "Power on/off sequence ".
- (3) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (4) The standard limited warranty is only applicable when the module is used for general notebook applications. If used for purposes other than as specified, BOE is not to be held reliable for the defective operations. It is strongly recommended to contact BOE to find out fitness for a particular purpose.

17.4 OTHERS

- (1) Avoid condensation of water. It may result in improper operation or disconnection of electrode.
- (2) Do not exceed the absolute maximum rating value. (the supply voltage variation, input voltage variation, Variation in part contents and environmental temperature, so on) Otherwise the module may be damaged.
- (3) If the module displays the same pattern continuously for a long period of time, it can be the situation when The "image sticks" to the screen.
- (4) This module has its circuitry PCB's on the rear or bottom side and should be handled carefully to avoid being stressed.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	42 OF 65

PRODUCT GROUP REV ISSUE DATE Customer Spec Rev. P3 2024.02.06

Appendix A

The Measurement Methods for the Dimensions of Module

1. Caliper:

Thickness of Outline (Without/With PCB For Flat Project)
(Without PCB For Bend Project)

2. Micrometer:

Thickness with PCB For Bend Project (Without FPC/COF Air Gap Effect)

- 3. Coordinate Measuring Machine:
- a. Length of Outline (Without Tape Wrinkle or Bulged)
- b. Width of Outline (Without PCB) (Without Tape Wrinkle or Bulged)
- c. Width of Outline (With PCB)
- d. CF Polarizer Size
- e. Active Area (Or AA_BM) Size
- f. Active Area to Outline (Without Tape Wrinkle or Bulged)
- g. Active Area to CF Polarizer
- h. The Distance of Bracket Holes
- i. P-Cover to Outline (Without Tape Wrinkle or Bulged)
- j. Length of P-Cover
- k. Connector Pin 1 to Outline (Without Tape Wrinkle or Bulged)
- 4. Height Gauge: The Different Height of Root and Top on the Bracket (Need to Calculate From Bracket Angle Spec.)
- 5. Feeler Gauge: The Warpage Spec. of Module

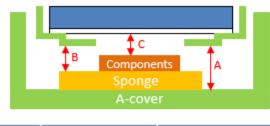
Notes:

Except the Critical Dimensions as Above, Other Dimensions are Measured by Coordinate Meas uring Machine If Necessary.

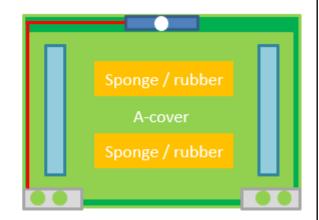
SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	43 OF 65

REV

ISSUE DATE


Customer Spec

Rev. P3


2024.02.06

Appendix B: System design Recommendation

LCM to A-Cover / sponges Z-gap

	Plastic Cover	Metal Cover		
Α	≥ 1.0mm	≥ 0.8mm		
В	≥ 0mm			
С	> 0.5mm			

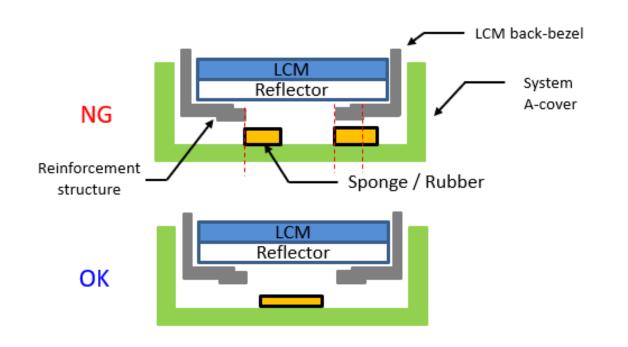
Purpose

The reflector area is very sensitive, BOE would suggest that design enough z-gap to decrease the risk of water ripple, white spots and other abnormal display

SPEC. NUMBER

SPEC. TITLE

NV116FHM-N41 V3.0 Product Specification Rev. P3


PAGE

44 OF 65 A4(210 X 297)

Appendix B: System design Recommendation

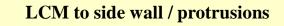
LCM to A-Cover / sponges z-gap

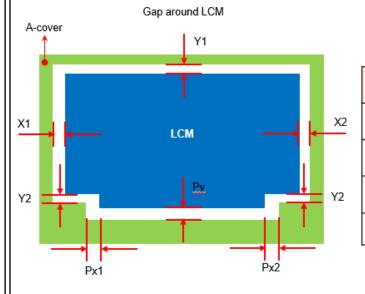
Purpose

If attach sponges or rubbers which correspond to white reflector area, it may cause white spot, pooling or other relative issues. BOE would suggest that attach wide range sponges / rubbers which can cover the LCM back-bezel opening

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	45 OF 65

REV


ISSUE DATE


Customer Spec

Rev. P3

2024.02.06

Appendix B: System design Recommendation

	Normal border (screws)	Narrow border (fix by tapes)			
X1 / X2	Min: 0.45mm	Min: 0.35mm			
Y1 / Y2	Min: 0.45mm	Min: 0.35mm			
Px1 / Px2	Min: 0.55mm				
Py	Willi. U.SSIIIII				

Purpose

BOE would suggest that design enough gap around LCM to prevent shock test failure, or interference, cell crack, abnormal display...etc. in the reliability test

SPEC. NUMBER

SPEC. TITLE

NV116FHM-N41 V3.0 Product Specification Rev. P3

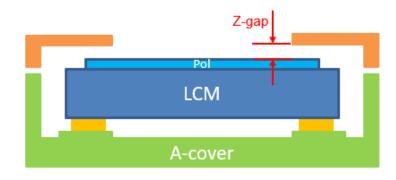
.

46 OF 65

PAGE

REV

ISSUE DATE


Customer Spec

Rev. P3

2024.02.06

Appendix B: System design Recommendation

LCM to B-cover z-gap

Bezel Tape	Z-Gap
Without	0.15 ~ 0.25mm
With	0.15 ~ 0.20mm

Purpose

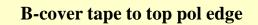
Too less z-gap between system B-cover and LCM top pol has high risk that may cause cell crack, pooling, light leakage and other issues

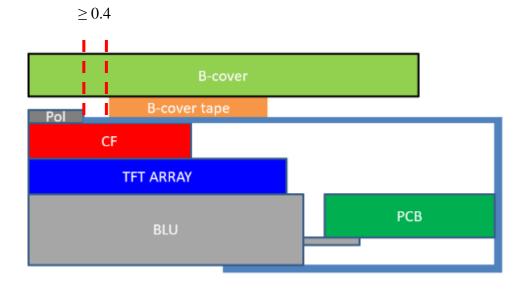
SPEC. NUMBER SPEC. TITLE PAGE

NV116FHM-N41 V3.0 Product Specification Rev. P3

47 OF 65

REV


ISSUE DATE


Customer Spec

Rev. P3

2024.02.06

Appendix B: System design Recommendation

If attach b-cover and LCM with tapes, Please let tapes to be located out of top pol edges 0.4mm away on 4 sides

Purpose

To avoid the B-cover tape override top pol then cause pooling or light leakage issue

SPEC. NUMBER

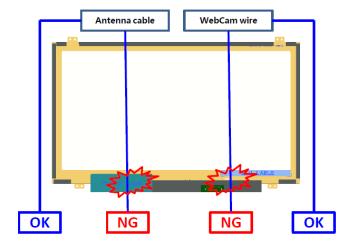
SPEC. TITLE

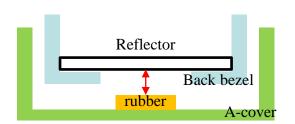
NV116FHM-N41 V3.0 Product Specification Rev. P3

PAGE 48 OF 65

REV

ISSUE DATE

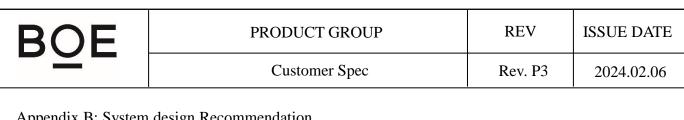

Customer Spec


Rev. P3

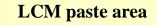
2024.02.06

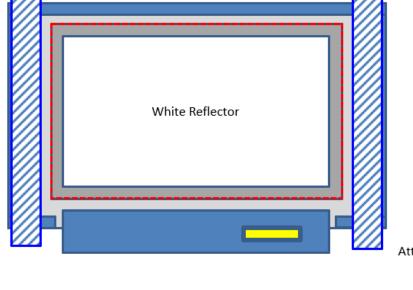
Appendix B: System design Recommendation

Antenna Cable & Webcam wire



If sponge within the reflector area is necessary, we suggest that the gap b etween reflector and sponge is more than 0.5mm


Purpos	e


- BOE would suggest that do not set Antenna or WebCam cable / wire go behind LCM to avoid backpack test, hinge test ,twist test or pogo test with abnormal display
- 2. If the cable / wire is necessary to go behind LCM, please make a groove with rounds or chamfers to protect the cable / wire, or attach with higher sponges / rubbers adjacent to the cable / wire route
- 3. Suggest that attach the cable / wire with tapes to A-cover
- 4. Do not attach anything with LCM reflector area. If attach cable / wire with LCM reflector area, it may cause pooling, white spot, light leakage and other related issues

SPEC. NUMBER	

Appendix B: System design Recommendation

Attachable area

Purpose

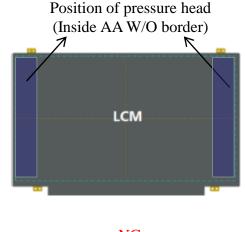
LCM rear view

If use the stretch remove tapes to fix LCM with A-cover, please set the stretch remove tapes correspond to the LCM back-bezel and do not let the tapes override the backbezel's level step of opening

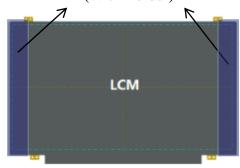
PAGE SPEC. TITLE SPEC. NUMBER 50 OF 65 NV116FHM-N41 V3.0 Product Specification Rev. P3

REV

ISSUE DATE


Customer Spec

Rev. P3


2024.02.06

Appendix B: System design Recommendation

LCM pressable area

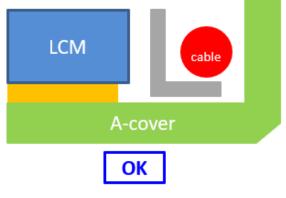
Position of pressure head (With Border)

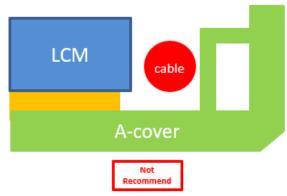
NG

OK

Purpose

- 1. If LCM is fixed on A-cover by using the press jig during assembling.
- 2. To avoid panel broken the design of pressure head of press jig can not only pin on cell panel. The pressure head needs to pin on the LCM frame, which the LCM frame can share the pressure of the pressing head.


SPEC. NUMBER SPEC. TITLE PAGE


NV116FHM-N41 V3.0 Product Specification Rev. P3

PAGE
51 OF 65

R2020-Q001-B

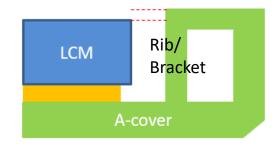
Purpose

Wires should be placed between protrusions/side wall and A-cover. If place the wires between LCM and Protrusions/side wall, it may interfere with LCM when assembling, or even cause LCM broken in reliability test.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	52 OF 65

REV

ISSUE DATE


Customer Spec

Rev. P3

2024.02.06

Appendix B: System design Recommendation

A-cover strength

Purpose

- 1. BOE would recommend that structural Rib/Bracket height is higher than LCM, in order to avoiding pressures to LCM.
- 2. The L-shape Bracket is recommended.

SPEC. NUMBER

SPEC. TITLE

NV116FHM-N41 V3.0 Product Specification Rev. P3

PAGE 53 OF 65

R2020-Q001-B

BOE			PRODUCT GROUP		REV	ISSUE DATE
	7.		Customer Spec		Rev. P3	2024.02.06
Appendix B: Sy	ystem	design Recomr	nendation			
		Syst	em A-cover Inne	r Surface		
			LCM			
		Step	В	ırr	sponge	
			A-cover			
Brand logo						
i Phrnace i			st any burr, segment g Glass Broken by stre		_	go, which may

Purpose	There should not exist any burr, segment gap or protrusions beside Logo, which may
	cause White Spot or Glass Broken by stress concentration.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	54 OF 65

REV

ISSUE DATE

Customer Spec

Rev. P3

2024.02.06

Appendix B: System design Recommendation

Keyboard area & Mouse pad

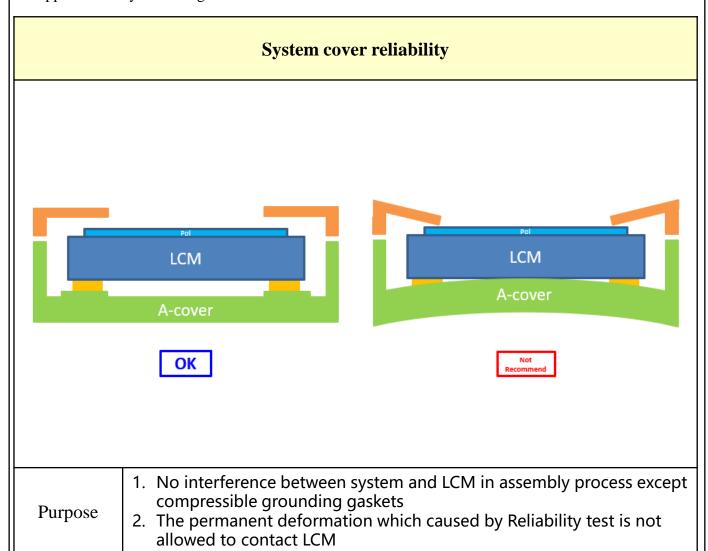
Purpose

The transition surface between keyboard and mouse pad should be smooth and without vertical steps\ too large level steps

SPEC. NUMBER

SPEC. TITLE

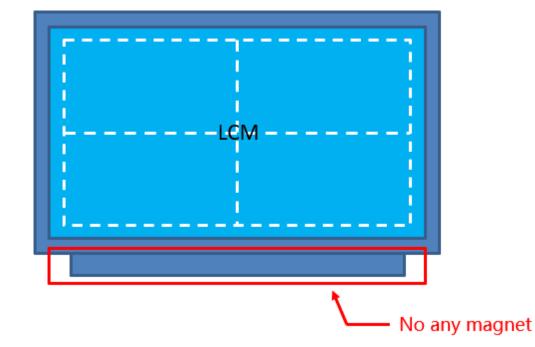
NV116FHM-N41 V3.0 Product Specification Rev. P3


PAGE

55 OF 65

R2020-Q001-B

Appendix B: System design Recommendation



SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	56 OF 65

Appendix B: System design Recommendation

A/B-cover near LCD PCBA

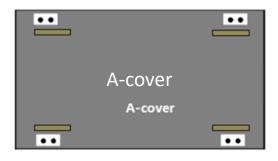
Purpose

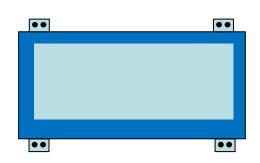
There should not been any magnet object close to LCM PCBA, it may cause physical or electricity noise issue

SPEC. NUMBERSPEC. TITLEPAGENV116FHM-N41 V3.0 Product Specification Rev. P357 OF 65

REV

ISSUE DATE


Customer Spec


Rev. P3

2024.02.06

Appendix B: System design Recommendation

A-cover add sponges on Boss side wall

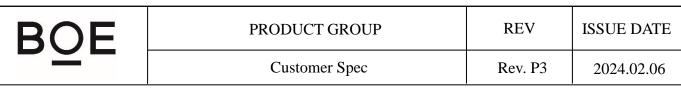
Purpose

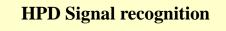
BOE would suggest to attach Sponges to the side-wall of the Boss column of A-cover to reduce the risk of panel broken in assembling process.

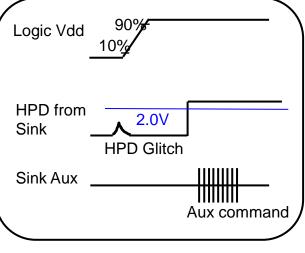
SPEC. NUMBER

SPEC. TITLE

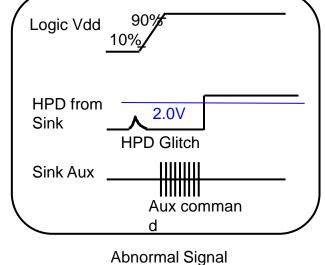
NV116FHM-N41 V3.0 Product Specification Rev. P3


PAGE 58 OF 65


Appendix B: System design Recommendation LCM to A-Cover / sponges z-gap Connector Connector Source FPC OK


	process (1 and 11 C Bonding rocation is related to Wask and can not be changed easily)
	process (Panel FPC Bonding location is related to Mask and can not be changed easily)
Purpose	direction, it may cause FPC lead broken during system connector plug and un-plug
	Bent type product: The System Connector should not overlap with LCM FPC in X-

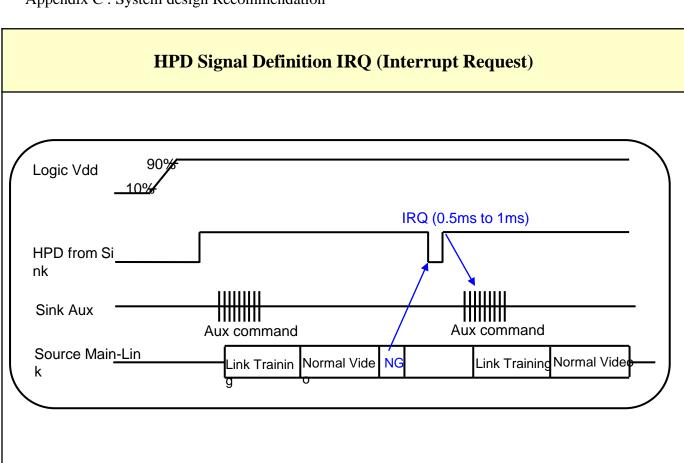
SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	59 OF 65



Appendix C: System design Recommendation

Normal Signal (Ignore HPD Glit ch)

Purpose


When HPD glitch voltage less than 2.0(V), system signal can't output AUX command data.

PAGE SPEC. TITLE SPEC. NUMBER 60 OF 65 NV116FHM-N41 V3.0 Product Specification Rev. P3

R2020-Q001-B

Appendix C: System design Recommendation

Purpose	When HPD signal low than 0.5ms to 1ms, the source device should check sink status field from the DPCD and take link training again.
---------	---

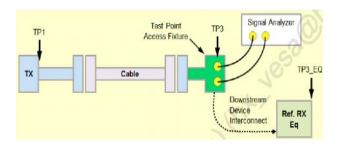
SPEC. NUMBER SPEC. TITLE

NV116FHM-N41 V3.0 Product Specification Rev. P3

PAGE
61 OF 65

REV

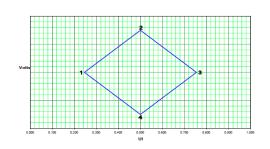
ISSUE DATE


Customer Spec

Rev. P3

2024.02.06

Appendix C: System design Recommendation


Main link eye diagram of TP3

Measured TP3 on LCM connector.

	UI	Voltage
1	0.246	0
2	0.5	0.075
3	0.755	0
4	0.5	-0.075

Eye for TP3 at HBR

Downstream Device Mask at TP3

	UI	Voltage
1	0.375	0
2	0.5	0.023
3	0.625	0
4	0.5	-0.023

Eye for TP3 at RBR

Purpose

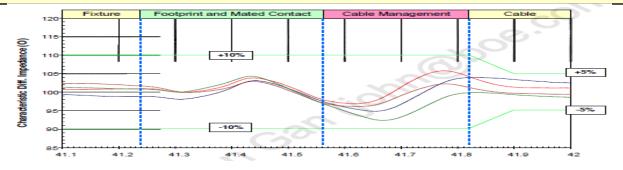
- 1. Main Link EYE Diagram should meet TP3 point of VESA.
- 2. The measure method is through access fixture.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	62 OF 65

R2020-Q001-B

REV

ISSUE DATE


Customer Spec

Rev. P3

2024.02.06

Appendix C : System design Recommendation

Differential Impedance Profile Measurement Data Example

Segment	Differential Impedance Value	Maximum Tolerance
Fixture	100Ω/VESA	±10%
Connector	100Ω/VESA	±10%
Wire management	100Ω/VESA	±10%
Cable	100Ω/VESA	±5%

Impedance Profile Values for Cable Assembly

Purpose

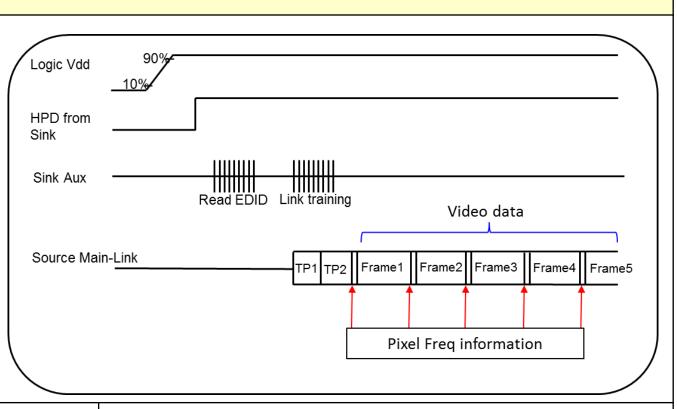
Cable Impedance Profile 100ohm for Cable Assembly

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV116FHM-N41 V3.0 Product Specification Rev. P3	63 OF 65

R2020-Q001-B

REV

ISSUE DATE


Customer Spec

Rev. P3

2024.02.06

Appendix C: System design Recommendation

Main Link Pixel Freq information value of MSA data

Purpose

- 1. It need to fix pixel freq information value of MSA data output to prevent the initial abnormal pixel freq information value from incoming after power on.
- 2. BOE can read DPCD to check this value. Ex: BIOS is 1.62G, but into windows is 2.7G.

SPEC. NUMBER SPEC

SPEC. TITLE

NV116FHM-N41 V3.0 Product Specification Rev. P3

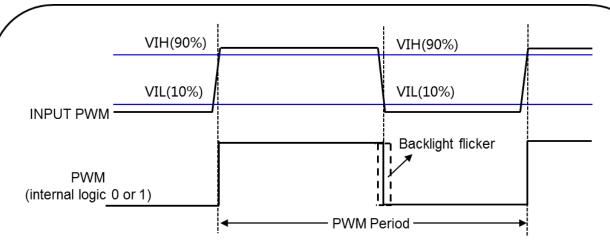
PAGE

64 OF 65

R2020-Q001-B

REV

ISSUE DATE


Customer Spec

Rev. P3

2024.02.06

Appendix C: System design Recommendation

Example:

Freq	Cycle Time	PWM Rising Time	PWM Falling Time
200Hz	5ms	≤1us	≤1us
1KHz	1ms	≤200ns	≤200ns

Purpose

- 1. LED driver need to calculate the duty cycle of input PWM signal.
- 2. To avoid backlight flicker visible on LCD, system input PWM suggest : PWM rising ≤ 200 ppm*cycle time ; PWM falling ≤ 200 ppm*cycle time.

NV116FHM-N41 V3.0 Product Specification Rev. P3