屏库:全球液晶屏交易中心

PRODUCT SPECIFICATION

Doc. Number:

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO: N133HSE SUFFIX: EB3

Customer:common	model
APPROVED BY	SIGNATURE
Name / Title	
Note	
	<u> </u>
Please return 1 copy for your cosignature and comments.	onfirmation with your

Approved By	Checked By	Prepared By
楊竣傑	曹文彬	陳文政
2013-12-03	2013-11-19	2013-10-31
15:14:56 CST	19:13:13 CST	11:47:30 CST

Version 3.0

4 December 2013

1/43

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	5
2.1 CONNECTOR TYPE	5
3. ABSOLUTE MAXIMUM RATINGS	6
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ELECTRICAL ABSOLUTE RATINGS	6
3.2.1 TFT LCD MODULE	
4. ELECTRICAL SPECIFICATIONS	
4.1 FUNCTION BLOCK DIAGRAM	
4.2. INTERFACE CONNECTIONS	
4.3 ELECTRICAL CHARACTERISTICS	9
4.3.1 LCD ELETRONICS SPECIFICATION	9
4.3.2 LED CONVERTER SPECIFICATION	
4.3.3 BACKLIGHT UNIT	
4.4 DISPLAY PORT SIGNAL TIMING SPECIFICATION	14
4.4.1 DISPLAY PORT INTERFACE	
4.5 DISPLAY TIMING SPECIFICATIONS	
4.6 POWER ON/OFF SEQUENCE	
5. OPTICAL CHARACTERISTICS	
5.1 TEST CONDITIONS	
5.2 OPTICAL SPECIFICATIONS	
6. RELIABILITY TEST ITEM	
7. PACKING	
7.1 MODULE LABEL	
7.2 CARTON	
7.3 PALLET	
7.4 UN-PACK METHOD	
8. PRECAUTIONS	
8.1 HANDLING PRECAUTIONS	
8.2 STORAGE PRECAUTIONS	27
8.3 OPERATION PRECAUTIONS	27
Appendix. EDID DATA STRUCTURE	
Appendix. OUTLINE DRAWING	

Version 3.0

4 December 2013

2 / 43

 \oslash

PRODUCT SPECIFICATION

Appendix. SYSTEM COVER DESIGN GUIDANCE	
Appendix. LCD MODULE HANDLING MANUAL	

Version 3.0

4 December 2013

3 / 43

REVISION HISTORY

INNOLUX

群創光電

Version	Date	Page	Description
3.0	Oct,31,2013	All	Spec Ver.3.0 was first issued

Version 3.0

4 December 2013

4 / 43

1. GENERAL DESCRIPTION

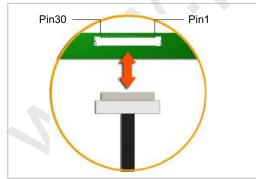
1.1 OVERVIEW

N133HSE-EB3 is a 13.3" (13.3" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 30 pins EDP interface. This module supports 1920 x 1080 FHD model and can display 16,777,216 colors. The optimum viewing angle is at 6 o'clock direction.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note	
Screen Size	13.3 diagonal			
Driver Element	a-si TFT active matrix	-	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	-	
Pixel Pitch	0.1529 (H) x 0.1529 (V)	mm	-	
Pixel Arrangement	RGB vertical stripe		-	
Display Colors	16,777,216	color	-	
Transmissive Mode	Normally black	-	-	
Surface Treatment	Hard coating (3H), Glare	-	-	
Luminance, White	350	Cd/m2		
Power Consumption	Total 5.77 W(Max.) @ cell 0.86W(Max.), BL 4.91 W	Total 5.77 W(Max.) @ cell 0.86W(Max.), BL 4.91 W(Max.)		

Note (1) The specified power consumption (with converter efficiency) is under the conditions at VCCS =


3.3 V, fv = 60 Hz, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and Ta = 25 ± 2 °C, whereas mosaic

2. MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	305.05	305.35	305.65	mm	
Module Size	Vertical (V) (W/ PCBA)	187.32	187.82	188.32	mm	(1)
	Thickness (T)	NA	2.69	2.85	mm	
Active Area	Horizontal	293.66	293.76	293.86	mm	
Active Area	Vertical	165.14	165.24	165.34	mm	
	Weight	-	245	260	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2.1 CONNECTOR TYPE

Please refer Appendix Outline Drawing for detail design.

Connector Part No.: IPEX-20455-030E-12

User's connector Part No: IPEX-20453-030T-01

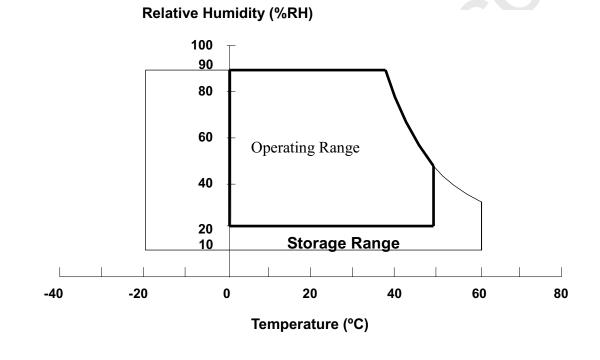
Version 3.0

4 December 2013

5/43

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT


Item	Symbol	Va	lue	Unit	Note	
nem	Symbol	Min.	Max.	Unit		
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	

Note (1) (a) 90 %RH Max. (Ta < 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta < 40 °C).

(c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 50 °C max.

3.2 ELECTRICAL ABSOLUTE RATINGS 3.2.1 TFT LCD MODULE

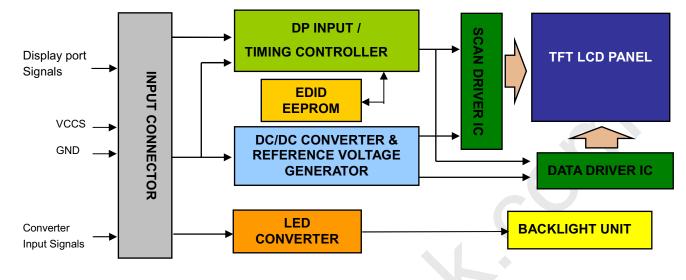
Item	Symbol	Va	lue	Unit	Note	
lient	Cymbol	Min.	Max.	Onic		
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	VCCS+0.3	V	(1)	
Converter Input Voltage	LED_VCCS	-0.3	25	V	(1)	
Converter Control Signal Voltage	LED_PWM,	-0.3	5	V	(1)	
Converter Control Signal Voltage	LED_EN	-0.3	5	V	(1)	

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

Version 3.0

4 December 2013

6/43


群創光電

PRODUCT SPECIFICATION

4. ELECTRICAL SPECIFICATIONS

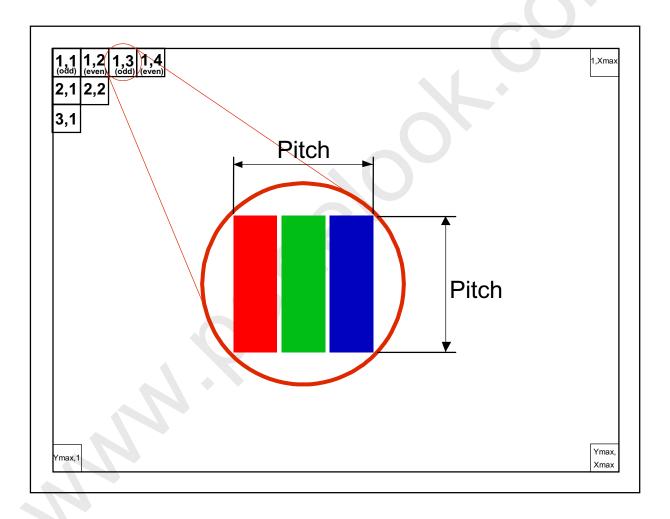
4.2. INTERFACE CONNECTIONS

PIN ASS	SIGNMENT		
Pin	Symbol	Description	Remark
1	NC	No Connection (Reserved for INX test)	
2	H_GND	High Speed Ground	
3	ML1-	Complement Signal-Lane 1	
4	ML1+	True Signal-Main Lane 1	
5	H_GND	High Speed Ground	
6	ML0-	Complement Signal-Lane 0	
7	ML0+	True Signal-Main Lane 0	
8	H_GND	High Speed Ground	
9	AUX+	True Signal-Auxiliary Channel	
10	AUX-	Complement Signal-Auxiliary Channel	
11	H_GND	High Speed Ground	
12	VCCS	Power Supply +3.3 V (typical)	
13	VCCS	Power Supply +3.3 V (typical)	
14	NC	No Connection (Reserved for INX test)	
15	GND	Ground	
16	GND	Ground	
17	HPD	Hot Plug Detect	
18	BL_GND	BL Ground	
19	BL_GND	BL Ground	
20	BL_GND	BL Ground	
21	BL_GND	BL Ground	
22	LED_EN	BL_Enable Signal of LED Converter	

Version 3.0

4 December 2013

7 / 43


 \oslash

PRODUCT SPECIFICATION

23	LED_PWM	PWM Dimming Control Signal of LED Converter	
24	NC	No Connection (Reserved for INX test)	
25	NC	No Connection (Reserved for INX test)	
26	LED_VCCS	BL Power	
27	LED_VCCS	BL Power	
28	LED_VCCS	BL Power	
29	LED_VCCS	BL Power	
30	NC	No Connection (Reserved for INX test)	

Note (1) The first pixel is odd as shown in the following figure.

Version 3.0

4 December 2013

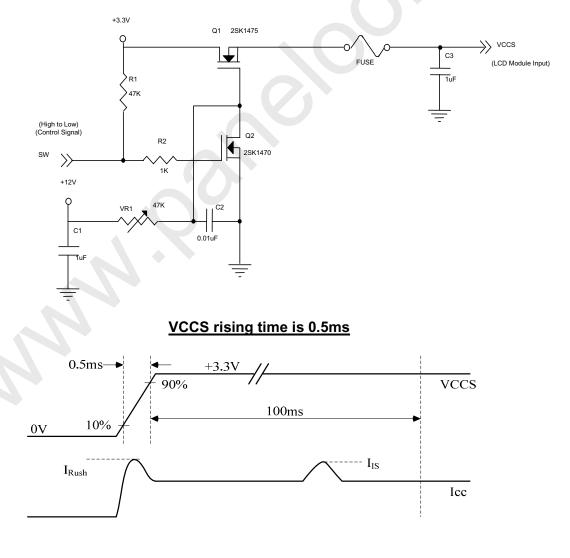
8 / 43

 $\langle p \rangle$

PRODUCT SPECIFICATION

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION


Parameter		Symbol	Value			Unit	Note
		Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage		VCCS	3.0	3.3	3.6	V	(1)-
HPD			3.0	-	3.6	V	
		Low Level	0	-	0.4	V	
Ripple Voltage		V _{RP}	-	50	-	mV	(1)-
Inrush Current	Inrush Current		-	-	1.5	Α	(1),(2)
Dowor Supply Current	Mosaic	loo	-	244	262	mA	(3)a
Power Supply Current	White	lcc	-	271	310	mA	(3)b

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) I_{RUSH} : the maximum current when VCCS is rising

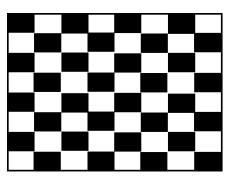
 I_{IS} : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: white.

Version 3.0

4 December 2013

9/43


群創光電

a. Mosaic Pattern

PRODUCT SPECIFICATION

Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Active Area

b. White Pattern

Active Area

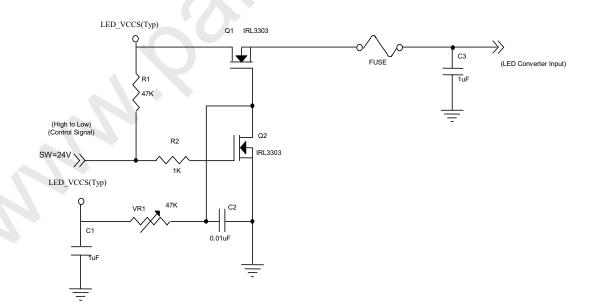
Version 3.0

4 December 2013

10/43

 $\langle p \rangle$

PRODUCT SPECIFICATION


4.3.2 LED CONVERTER SPECIFICATION

Parameter		Symphol		Value		Linit	Niete
Pala	neter	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Input pow	er supply voltage	LED_Vccs	5.0	12.0	21.0	V	
Converter Inrush Cu	irrent	ILED _{RUSH}	-	-	1.5	А	(1)
EN Control Level	Backlight On		2.2	-	5.0	V	\bigcirc
EN COntrol Level	Backlight Off		0	-	0.6	V	
PWM Control Level	PWM High Level		2.2	-	5.0	V	
PVVIVI Control Level	PWM Low Level		0	-	0.6	V	
PWM Control Duty F	Ratio		5	-	100	%	
PWM Control Permissive Ripple Voltage		VPWM_pp	-		100	mV	
PWM Control Frequ	PWM Control Frequency		190		1K	Hz	(2)
LED Power Current	LED_VCCS =Typ.	ILED	302	357	409	mA	(3)

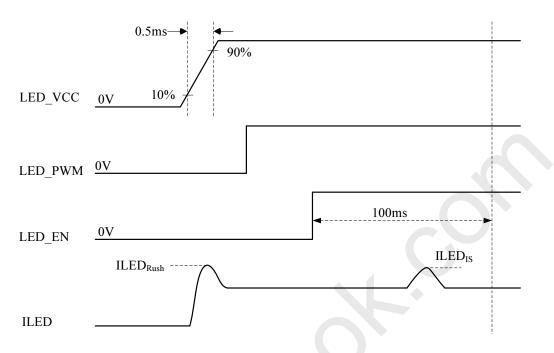
Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising,

ILED_{IS}: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 ± 2 °C, f_{PWM} = 200 Hz, Duty=100%.

Version 3.0

4 December 2013


11 / 43

群創光電

PRODUCT SPECIFICATION

VLED rising time is 0.5ms

Note (2) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency f_{PWM} should be in the range $(N + 0.33) * f \le f_{PWM} \le (N + 0.66) * f$ N: Integer $(N \ge 3)$ f: Frame rate

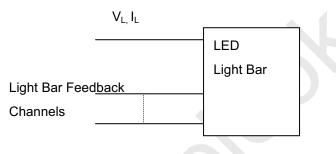
Note (3) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.

Version 3.0

4 December 2013

12/43

群創光電



PRODUCT SPECIFICATION

4.3.3 BACKLIGHT UNIT

					Ta = 25 =	±2 ℃
Demonstern	O. maked		Value		11	Nete
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
LED Light Bar Power Supply Voltage	VL	23.4	26.1	28.8	V	(1)(2)(Duty100%)
LED Light Bar Power Supply Current	IL		132		mA	-(1)(2)(Duty100%)
Power Consumption	PL	-	3.4453	3.8016	W	(3)
LED Life Time	L _{BL}	15000	-	-	Hrs	(4)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below :

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

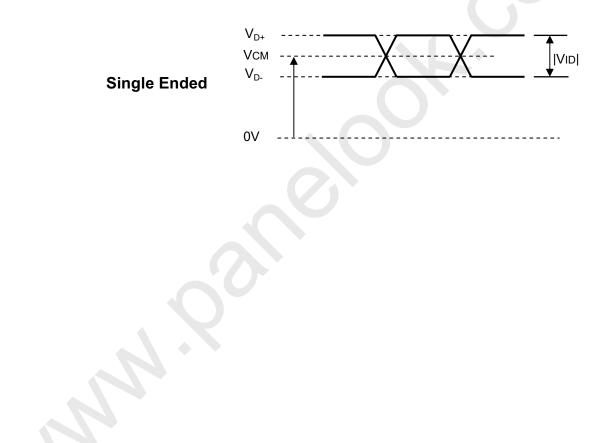
Note (3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = 22 mA (Per EA) until the brightness becomes $\leq 50\%$ of its original value.

Version 3.0

4 December 2013

13/43


4.4 DISPLAY PORT SIGNAL TIMING SPECIFICATION 4.4.1 DISPLAY PORT INTERFACE

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Differential Signal Common Mode Voltage(MainLink and AUX)	VCM	0		2	V	(1)(3)
AUX AC Coupling Capacitor	C _{AUX}	75		200	nF	(2)

Note (1) Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPort[™] Standard Version 1.1.

(2) The AUX AC Coupling Capacitor should be placed on Source Devices.

(3)The source device should pass the test criteria described in DisplayPortCompliance Test Specification (CTS) 1.1

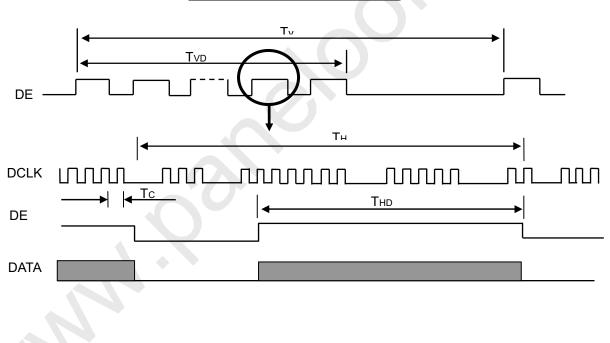
Version 3.0

4 December 2013

14 / 43

屏库:全球液晶屏交易中心

INNOLUX 群創光電


PRODUCT SPECIFICATION

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

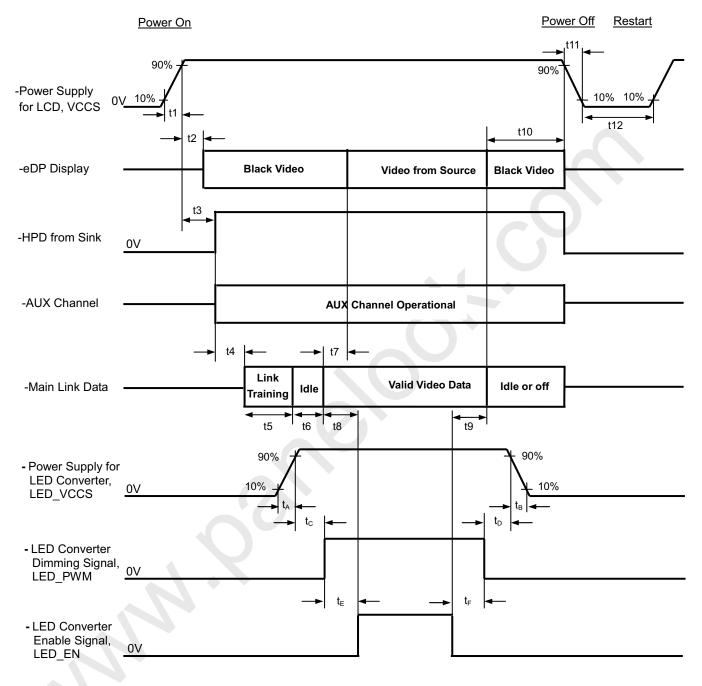
Refresh rate 60Hz

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	116.17	138.78	142.77	MHz	-
	Vertical Total Time		1103	1112	1462	ТН	-
	Vertical Active Display Period	TVD	1080	1080	1080	тн	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	32	TV-TVD	тн с	-
DE	Horizontal Total Time	ТН	2058	2080	2910	Тс	-
	Horizontal Active Display Period	THD	1920	1920	1920	Тс	-
	Horizontal Active Blanking Period	THB	TH-THD	160	TH-THD	Тс	-

INPUT SIGNAL TIMING DIAGRAM

Version 3.0

4 December 2013


15/43

群創光電

PRODUCT SPECIFICATION

4.6 POWER ON/OFF SEQUENCE

Version 3.0

4 December 2013

16/43

 \oslash

PRODUCT SPECIFICATION

Timing Specifications:

Parameter	Description	Reqd. By	Val Min	lue Max	Unit	Notes
t1	Power rail rise time, 10% to 90%	Source	0.5	10	ms	-
t2	Delay from LCD,VCCS to black video generation	Sink	0	200	ms	Automatic Black Video generation prevents display noise until valid video data is received from the Source (see Notes:2 and 3 below)
t3	Delay from LCD,VCCS to HPD high	Sink	0	200	ms	Sink AUX Channel must be operational upon HPD high (see Note:4 below)
t4	Delay from HPD high to link training initialization	Source	-	-	ms	Allows for Source to read Link capability and initialize
t5	Link training duration	Source	-	-	ms	Dependant on Source link training protocol
t6	Link idle	Source	- (ms	Min Accounts for required BS-Idle pattern. Max allows for Source frame synchronization
t7	Delay from valid video data from Source to video on display	Sink	0	50	ms	Max value allows for Sink to validate video data and timing. At the end of T7, Sink will indicate the detection of valid video data by setting the SINK_STATUS bit to logic 1 (DPCD 00205h, bit 0), and Sink will no longer generate automatic Black Video
t8	Delay from valid video data from Source to backlight on	Source	-	-	ms	Source must assure display video is stable
t9	Delay from backlight off to end of valid video data	Source	-	-	ms	Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below)
t10	Delay from end of valid video data from Source to power off	Source	0	500	ms	Black video will be displayed after receiving idle or off signals from Source
t11	VCCS power rail fall time, 90% to 10%	Source	0.5	10	ms	-
t12	VCCS Power off time	Source	500	-	ms	-
t _A	LED power rail rise time, 10% to 90%	Source	0.5	10	ms	-
t _B	LED power rail fall time, 90% to 10%	Source	0	10	ms	-

Version 3.0

4 December 2013

17 / 43

t _C	Delay from LED power rising to LED dimming signal	Source	1	-	ms	-
t _D	Delay from LED dimming signal to LED power falling	Source	1	-	ms	-
t _E	Delay from LED dimming signal to LED enable signal	Source	1	-	ms	-
t _F	Delay from LED enable signal to LED dimming signal	Source	1	-	ms	-

Note (1) Please don't plug or unplug the interface cable when system is turned on.

Note (2) The Sink must include the ability to automatically generate Black Video autonomously. The Sink must automatically enable Black Video under the following conditions:

- Upon LCDVCC power-on (within T2 max)

- When the "NoVideoStream_Flag" (VB-ID Bit 3) is received from the Source (at the end of T9)
- Note (3) The Sink may implement the ability to disable the automatic Black Video function, as described in Note (2), above, for system development and debugging purposes.
- Note (4) The Sink must support AUX Channel polling by the Source immediately following LCDVCC power-on without causing damage to the Sink device (the Source can re-try if the Sink is not ready). The Sink must be able to response to an AUX Channel transaction with the time specified within T3 max.

4 December 2013

18 / 43

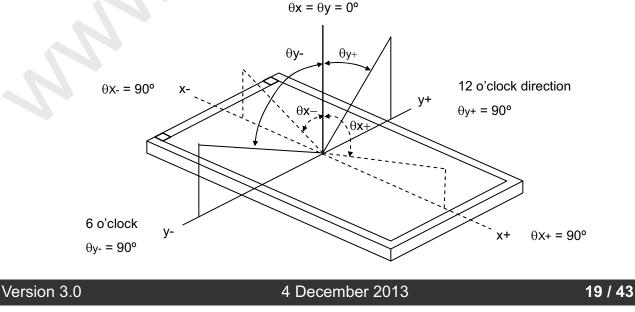
 $\langle p \rangle$

PRODUCT SPECIFICATION

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V _{cc}	3.3	V			
Input Signal	According to typical v	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
LED Light Bar Input Current	١L	132	mA			


The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		600	800	-	-	(2),(5),(7)	
Response Time		T _R			14	19	ms	(3),(7)	
Response fille		T _F			11	16	ms	(3),(7)	
Average Lumina	ance of White	LAVE		295	350	-	cd/m ²	(4),(6),(7)	
	Red	Rx			0.640		-		
	Reu	Ry	θ _x =0°, θ _Y =0°		0.340		-		
	Green	Gx	Viewing Normal Angle		0.308			-	
Color	Green	Gy			Тур –	0.615		- ms ms cd/m ² - - -	(1)(E)(7)
Chromaticity	Dhuo	Bx		0.03	0.150	0.03	-	(1),(5),(7)	
	Blue	By			0.070		-		
	White	Wx			0.313		-		
	vvnite	Wy			0.329	- 19 16 - Typ +	-		
	Horizontal	θ _x +		80	85	-			
	Horizoniai	θ _x -		80	85	-	Dee	(4) (E) (7)	
Viewing Angle		θ _Y +	CR≥10	80	85	-	Deg.	(1),(5),(7)	
	Vertical	θγ-		80	85	-			
White Variation		δW _{5p}	θ _x =0°, θ _Y =0°	70	80	-	%	(5),(6),(7)	

Note (1) Definition of Viewing Angle (θx , θy):

Normal

InnoLux

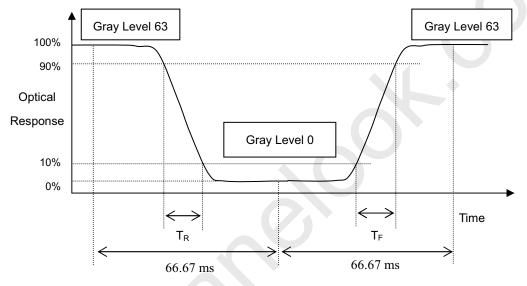
群創光電

PRODUCT SPECIFICATION

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0


L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F) :

Note (4) Definition of Average Luminance of White (LAVE):

Measure the luminance of gray level 63 at 5 points

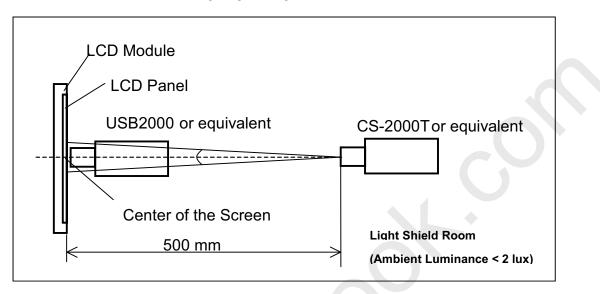
 $L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$

L (x) is corresponding to the luminance of the point X at Figure in Note (6)

Version 3.0

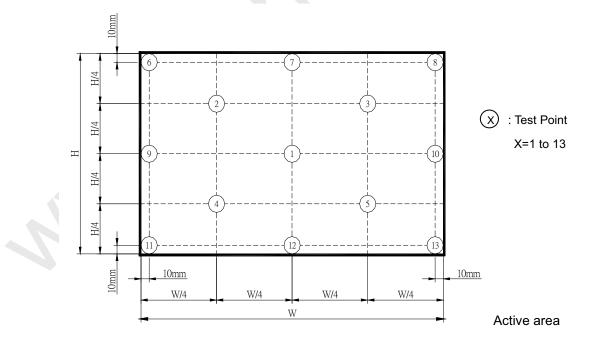
4 December 2013

20 / 43


 $\langle p \rangle$

PRODUCT SPECIFICATION

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

 $\delta W_{5p} = {Minimum [L (1)~L (5)] / Maximum [L (1)~L (5)]}*100\%$

Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

Version 3	.0
-----------	----

4 December 2013

21 / 43

6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note
High Temperature Storage Test	60°C, 240 hours	
Low Temperature Storage Test	-20°C, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour←→60°C, 0.5hour; 100cycles, 1hour/cycle	
High Temperature Operation Test	50°C, 240 hours	(1) (2)
Low Temperature Operation Test	0°C, 240 hours	
High Temperature & High Humidity Operation Test	50°C, RH 80%, 240hours	
ESD Test (Operation)	150pF, 330Ω, 1sec/cycle Condition 1 : Contact Discharge, ±8KV Condition 2 : Air Discharge, ±15KV	(1)
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of $\pm X, \pm Y, \pm Z$	(1)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)

Note (1) criteria : Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Version 3.0

4 December 2013

22 / 43

群創光電

PRODUCT SPECIFICATION

7. PACKING

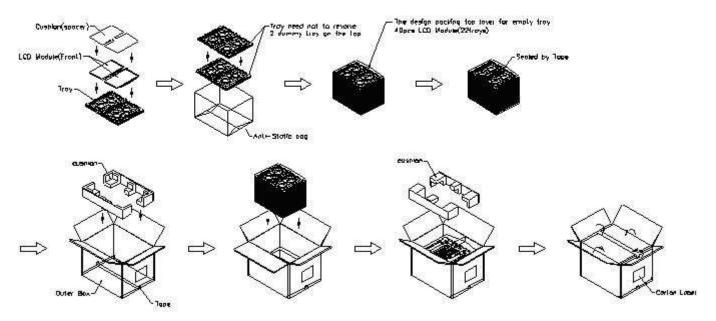
7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Version 3.0

4 December 2013

23 / 43


群創光電

PRODUCT SPECIFICATION

7.2 CARTON

Box Dimensions 540(L)*450(W)*320(H) Weight : Approx. 15.22 Kg (40 module .per. 1box)

Version 3.0

4 December 2013

24 / 43

7.3 PALLET

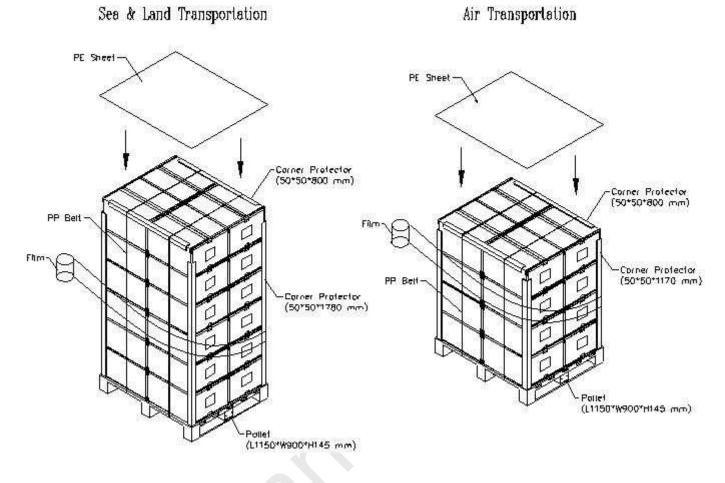


Figure. 7-2 Packing method

Version 3.0

4 December 2013

25 / 43

群創光電

PRODUCT SPECIFICATION

7.4 UN-PACK METHOD

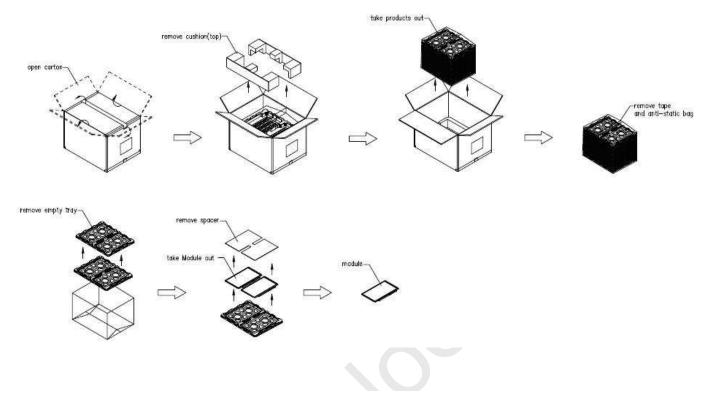


Figure. 7-3 Un-Packing method

Version 3.0

4 December 2013

26 / 43

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMIS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.

4 December 2013

27 / 43

Appendix. EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the

VESA Plug & Display and FPDI standards.

Byte #(decimal)	Byte #(hex)	Field Name and Comments	Value (hex)	Value (binary)
	#(nex)	Header	00	00000000
1	1	Header	FF	11111111
2	2	Header	FF	11111111
3	3	Header	FF	11111111
4	4	Header	FF	11111111
5	5	Header	FF	11111111
6	6	Header	FF	11111111
7	7	Header	00	00000000
8	8	EISA ID manufacturer name ("CMN")	0D	00001101
9	9	EISA ID manufacturer name	AE	10101110
10	0A	ID product code (LSB)	57	01010111
11		ID product code (MSB)	13	00010011
12	0C	ID S/N (fixed "0")	00	00000000
13	0D	ID S/N (fixed "0")	00	00000000
14	0E	ID S/N (fixed "0")	00	00000000
15	0F	ID S/N (fixed "0")	00	00000000
16	10	Week of manufacture (fixed week code)	33	00110011
17	11	Year of manufacture (fixed year code)	17	00010111
18	12	EDID structure version ("1")	01	00000001
19	13	EDID revision ("4")	04	00000100
20	14	Video I/P definition ("Digital")	A5	10100101
21	15	Active area horizontal ("29.376cm")	1D	00011101
22		Active area vertical ("16.524cm")	11	00010001
23	17	Display Gamma (Gamma = "2.2")	78	01111000
24	18	Feature support ("RGB, Non-continous")	02	00000010
25	19	Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0	CE	11001110
26	1A	Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0	85	10000101
27		Rx=0.64	A3	10100011
28	1C	Ry=0.34	57	01010111
29	1D	Gx=0.308	4E	01001110
30	1E	Gy=0.615	9D	10011101
31	1F	Bx=0.15	26	00100110
32	20	By=0.07	12	00010010
33	21	Wx=0.313	50	01010000
34	22	Wy=0.329	54	01010100
35	23	Established timings 1	00	00000000
36	24	Established timings 2	00	00000000
37	25	Manufacturer's reserved timings	00	00000000
38	26	Standard timing ID # 1	01	00000001
39	27	Standard timing ID # 1	01	00000001
40	28	Standard timing ID # 2	01	00000001
41	29	Standard timing ID # 2	01	00000001
Version 3	•	4 December 2013		28 / 43

Version 3.0

4 December 2013

28 / 43

 \oslash

PRODUCT SPECIFICATION

			1	1
42	2A	Standard timing ID # 3	01	00000001
43	2B	Standard timing ID # 3	01	0000001
44	2C	Standard timing ID # 4	01	00000001
45	2D	Standard timing ID # 4	01	00000001
46	2E	Standard timing ID # 5	01	00000001
47	2F	Standard timing ID # 5	01	0000001
48	30	Standard timing ID # 6	01	0000001
49	31	Standard timing ID # 6	01	0000001
50	32	Standard timing ID # 7	01	00000001
51	33	Standard timing ID # 7	01	00000001
52	34	Standard timing ID # 8	01	00000001
53	35	Standard timing ID # 8	01	00000001
54	36	Detailed timing description # 1 Pixel clock ("138.78MHz")	36	00110110
55	37	# 1 Pixel clock (hex LSB first)	36	00110110
56	38	# 1 H active ("1920")	80	10000000
57	39	# 1 H blank ("160")	A0	10100000
58	3A	# 1 H active : H blank	70	01110000
59	3B	# 1 V active ("1080")	38	00111000
60	3C	# 1 V blank ("32")	20	00100000
61	3D	# 1 V active : V blank	40	01000000
62	3E	# 1 H sync offset ("46")	2E	00101110
63	3F	# 1 H sync pulse width ("30")	1E	00011110
64	40	# 1 V sync offset : V sync pulse width ("2:4")	24	00100100
65	41	# 1 H sync offset : H sync pulse width : V sync offset : V sync width(46:30:2:4)	00	00000000
66	42	# 1 H image size ("293 mm")	25	00100101
67	43	# 1 V image size ("165 mm")	A5	10100101
68	44	# 1 H image size : V image size	10	00010000
69	45	# 1 H boarder ("0")	00	00000000
70	46	# 1 V boarder ("0")	00	00000000
71	47	# 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives	18	00011000
72	48	Detailed timing description # 2	00	00000000
73	49	# 2 Flag	00	00000000
74	4A	# 2 Reserved	00	00000000
75	4B	# 2 ASCII string Model name	FE	11111110
76	4C	# 2 Flag	00	00000000
77	4D	# 2 Character of Model name ("N")	4E	01001110
78	4E	# 2 Character of Model name ("1")	31	00110001
79	4F	# 2 Character of Model name ("3")	33	00110011
80	50	# 2 Character of Model name ("3")	33	00110011
81	51	# 2 Character of Model name ("H")	48	01001000
82	52	# 2 Character of Model name ("S")	53	01010011
83	53	# 2 Character of Model name ("E")	45	01000101
84	54	# 2 Character of Model name ("-")	2D	00101101
85	55	# 2 Character of Model name ("E")	45	01000101
86	56	# 2 Character of Model name ("B")	42	01000010

Version 3.0

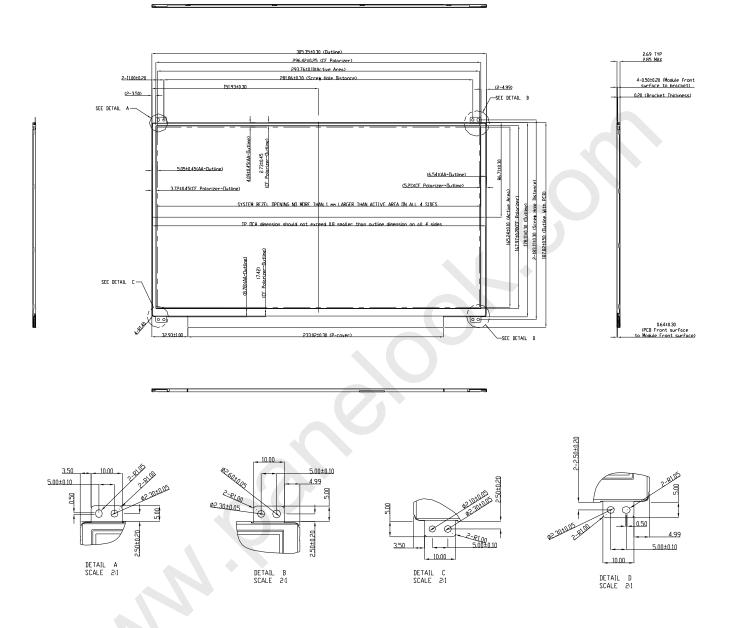
4 December 2013

29 / 43

07	57		33	00110014
87	57	# 2 Character of Model name ("3")		00110011
88	58	# 2 New line character indicates end of ASCII string	0A 20	00001010
89	59	# 2 Padding with "Blank" character		00100000
90	5A	Detailed timing description # 3		00000000
91	5B	# 3 Flag	00	00000000
92	5C	# 3 Reserved		0000000
93	5D	# 3 ASCII string Vendor		11111110
94	5E	# 3 Flag		00000000
95	5F	# 3 Character of string ("C")	43	01000011
96	60	# 3 Character of string ("M")	4D	01001101
97	61	# 3 Character of string ("N")	4E	01001110
98	62	# 3 New line character indicates end of ASCII string	0A	00001010
99	63	# 3 Padding with "Blank" character	20	00100000
100	64	# 3 Padding with "Blank" character		00100000
101	65	# 3 Padding with "Blank" character	20	00100000
102	66	# 3 Padding with "Blank" character	20	00100000
103	67	# 3 Padding with "Blank" character		00100000
104	68	# 3 Padding with "Blank" character	20	00100000
105	69	# 3 Padding with "Blank" character		00100000
106	6A	# 3 Padding with "Blank" character		00100000
107	6B	# 3 Padding with "Blank" character		00100000
108	6C	Detailed timing description # 4		00000000
109	6D	# 4 Flag		00000000
110	6E	# 4 Reserved		00000000
111	6F	# 4 ASCII string Model Name		11111110
112	70	# 4 Flag		00000000
113	71	# 4 Character of Model name ("N")	4E	01001110
114	72	# 4 Character of Model name ("1")		00110001
115	73	# 4 Character of Model name ("3")		00110011
116	74	# 4 Character of Model name ("3")		00110011
117	75	# 4 Character of Model name ("H")	48	01001000
118	76	# 4 Character of Model name ("S")		01010011
119	77	# 4 Character of Model name ("E")		01000101
120	78	# 4 Character of Model name ("-")		00101101
121	79	# 4 Character of Model name ("E")		01000101
122	7A	# 4 Character of Model name ("B")		01000010
123	7B	# 4 Character of Model name ("3")		00110011
124	7C	# 4 New line character indicates end of ASCII string		00001010
125	7D	# 4 Padding with "Blank" character		00100000
		Extension flag		00000000
126	7E		00	

Version 3.0

4 December 2013


30 / 43

 $\langle p \rangle$

PRODUCT SPECIFICATION

Appendix. OUTLINE DRAWING

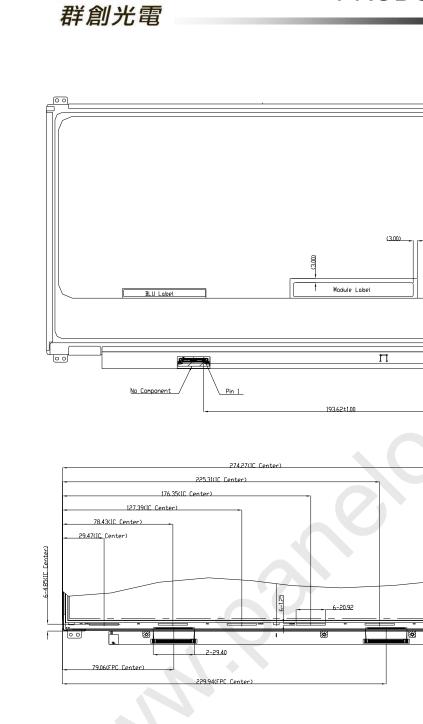
NOTES :

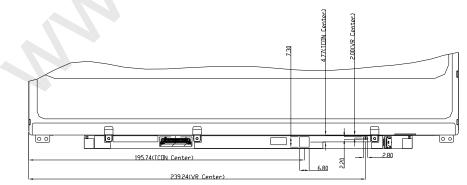
- 1. LCD MODULE INPUT CONNECTOR : I-PEX 20455-030E-12.
- 2. IN ORDER TO AVOID ABNORMAL DISPLAY, POOLING AND WHITE SPOT, NO OVERLAPPING IS SUGGESTED AT CABLES, ANTENNAS, CAMERA, WLAN, WAN OR FOREIGN OBJECTS OVER FPC, T-CON AND VR LOCATIONS.
- 3. EDP CONNECTOR IS MEASURED AT PIN1 AND ITS MATING LINE.
- 4. MODULE FLATNESS SPEC 0.5mm MAX.
- 5. "()" MARKS THE REFERENCE DIMENSIONS.

Version 3.0

4 December 2013

31 / 43


PRODUCT SPECIFICATION


00

Ð

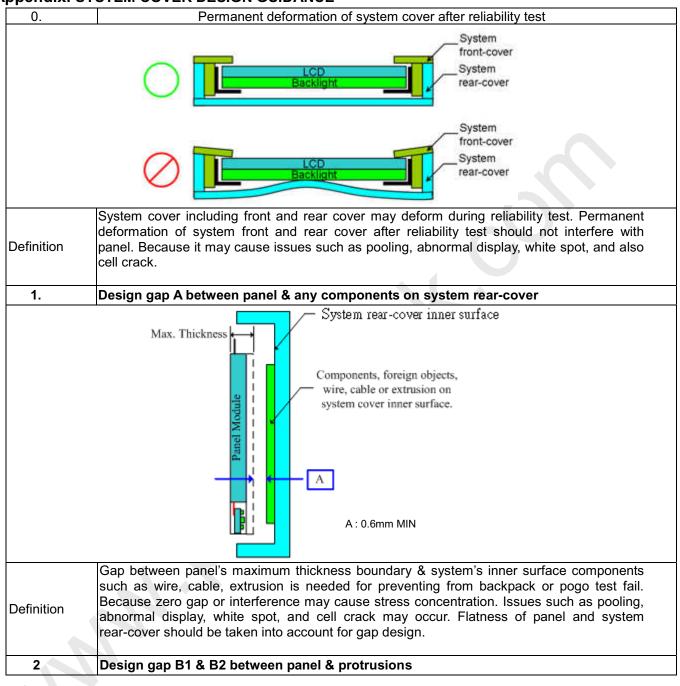
6.15±1.00

0 0

DRIVER IC, FPC, TCON, AND VR LOCATIONS SEE NOTES FOR EXPLANATION

Version 3.0

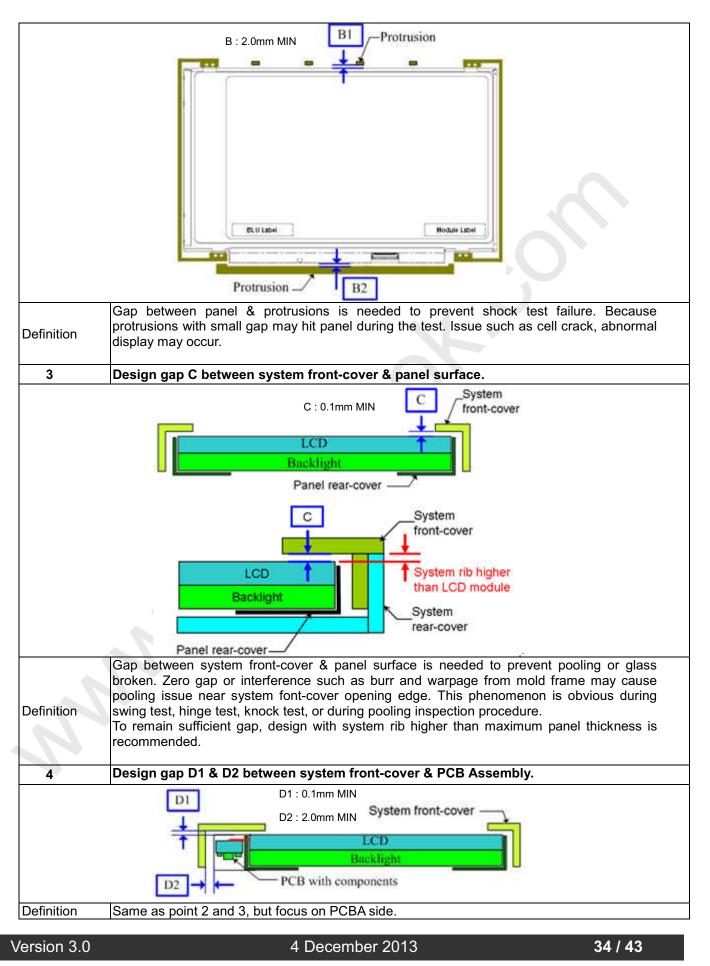
4 December 2013


32 / 43

群創光電

PRODUCT SPECIFICATION

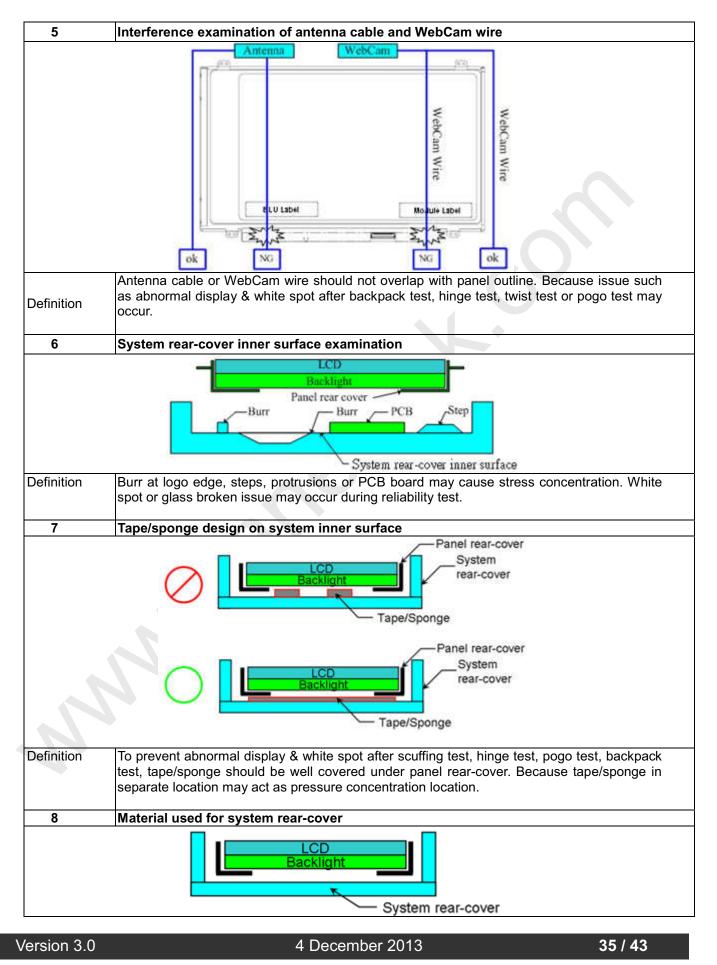
Appendix. SYSTEM COVER DESIGN GUIDANCE

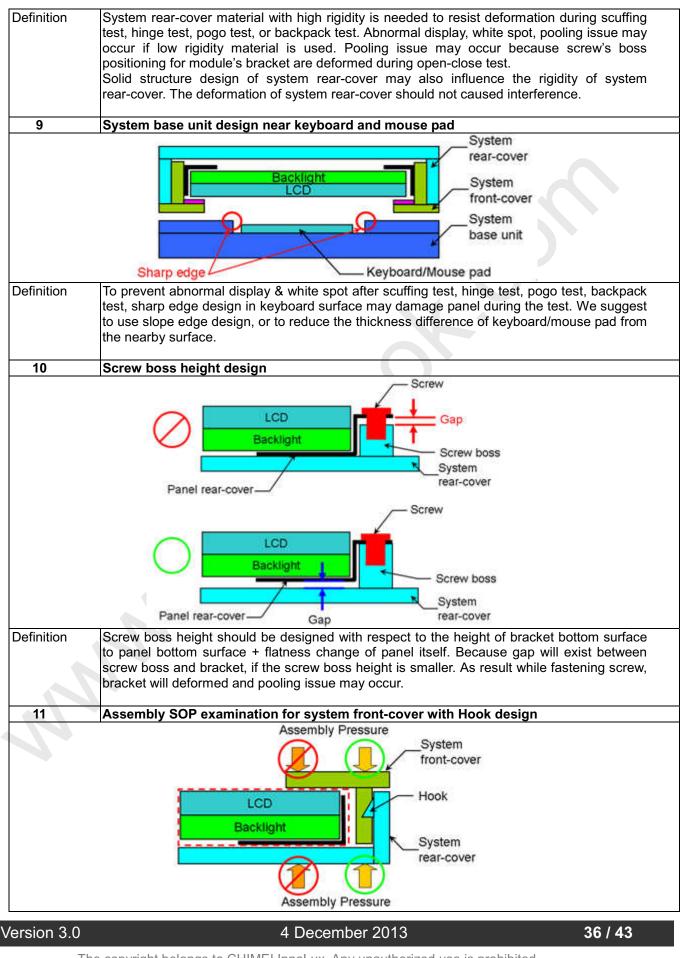


Version 3.0

4 December 2013

33 / 43




 $\langle p \rangle$

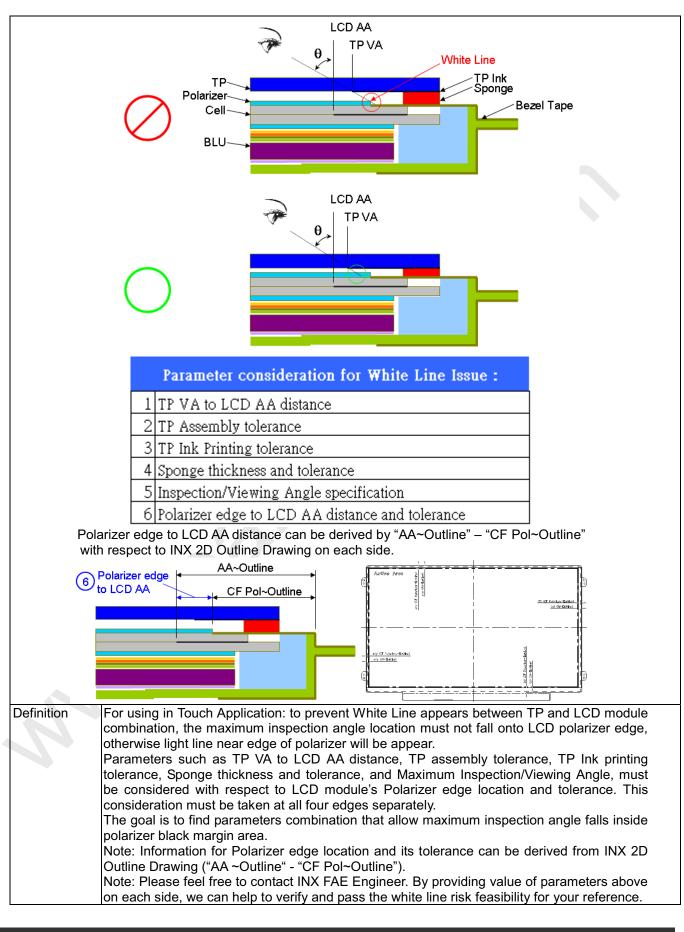
PRODUCT SPECIFICATION

 \oslash

PRODUCT SPECIFICATION

14	Touch Application : TP and LCD Module Combination for White Line Prevention				
Definition	To prevent system front-cover peeling at double tape contact area, Height difference between system front-cover assembly reference such as wall or components stack (wire, spacer) and double tape top surface must be less than 0.05mm.				
	Double tape LCD Backlight System rear-cover wall Components stack (wire, spacer)				
13	System front-cover assembly reference with Double tape design				
Definition	To prevent panel crack during system front-cover assembly process with double tape design, it is only allowed to give slight pressure (MAX 3 Kgf/50mm2) with large contact area. This can help to distribute the stress and prevent stress concentration. We also suggest putting the system on a flat surface stage to prevent unequal stress distribution during the assembly.				
12	Assembly SOP examination for system front-cover with Double tape design Assembly Force System front-cover LCD Backlight System rear-cover Flat surface stage				
12	Assembly SOP examination for system front-cover with Double tane design				
Definition	To prevent panel crack during system front-cover assembly process with hook design, it is not recommended to press panel or any location that related directly to the panel.				

Version 3.0


4 December 2013

37 / 43

群創光電

PRODUCT SPECIFICATION

Version 3.0

4 December 2013

38 / 43

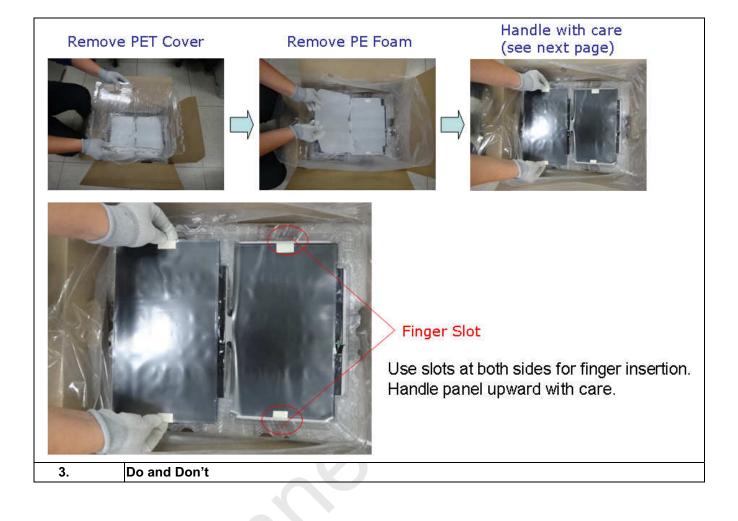
群創光電

PRODUCT SPECIFICATION

Appendix. LCD MODULE HANDLING MANUAL

Purpose	incorrect handlin This manual prov Any person whic 	g procedure. ides guide in unpacking and ha	sfunction possibility through andling steps. nel, should follow guide stated
1.	Unpacking		
		Open carton	Remove EPE Cushion
			\Box
Oper	n plastic bag	Cut Adhesive Tape	Remove EPE Cushion
2.	Panel Lifting		

Version 3.0


4 December 2013

39 / 43

 \oslash

PRODUCT SPECIFICATION

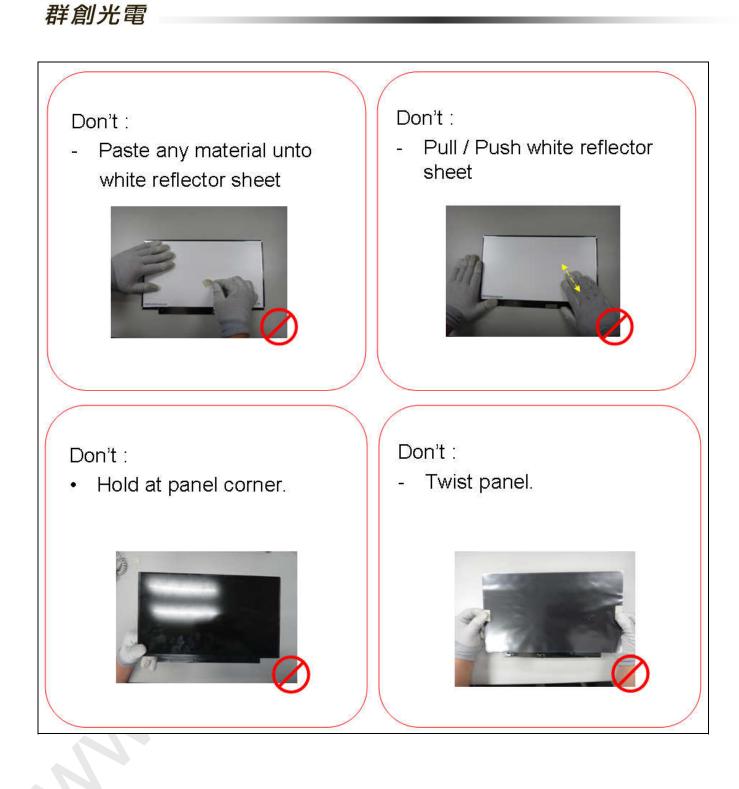
Version 3.0

4 December 2013

40 / 43

群創光電

PRODUCT SPECIFICATION



Version 3.0

4 December 2013

PRODUCT SPECIFICATION

Version 3.0

4 December 2013

42 / 43

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

 Hold panel at top edge while inserting connector.

Don't :

 Press white reflector sheet while inserting connector.

Do :

- Remove panel protector film starts from side tape.

Don't :

 Remove panel protector film from film corner directly before side tape is removed.

Version 3.0

4 December 2013

43 / 43